
AFIT/GOR/ENS/94M-10

AD-A278 577

A GENETIC ALGORITHM APPROACH TO

AUTOMATING SATELLITE RANGE SCHEDULING

THESIS DTIC
Donald Arthur Parish ELECTE

Captain, USAF APR 2 2 1994 U
AFIT/GOR/ENS/94M-10 G

Approved for public release; distribution unlimited

94-12269

94 - .. 5

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

Accesion For

NTIS CRAMI
OTIC TAB
Unannounced E-
Justification

By
Dist, ibution I

Availability Codes

Avail and Ior
Dist Special

THESIS APPROVAL

STUDENT: Donald A. Parish, Capt, USAF CLASS: GOR-94M

THESIS TITLE: A GENETIC ALGORITHM APPROACH TO
AUTOMATING SATELLITE RANGE SCHEDULING

DEFENSE DATE: 1 March 94

COMMITTEE:

Name/Title/Department Signature

Advisor:
James W. Chrissis, PhD, P.E.
Associate Professor of Operations Research /
Department of Operational Sciences
School of Engineering

Reader:
Gary B. Lamont, PhD
Professor of Electrical Engineering
Department of Electrical and Computer
Engineering
School of Engineering

Reader:
James T. Moore, Lt Col, USAF, PhD
Assistant Professor of Operations Research
Department of Operational Sciences
School of Engineering

ii

AFIT/GOR/ENS/94M-10

A GENETIC ALGORITHM APPROACH TO

AUTOMATING SATELLITE RANGE SCHEDULING

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Operations Research

Donald Arthur Parish, B.S.

Captain, USAF

March, 1994

Approved for public release; distribution unlimited

Acknowledgements

I would like to thank everyone who helped with this thesis. Of special note were my

advisor Dr. James W. Chrissis for his solid recommendations, and my readers:

Dr. Gary B. Lamont and Lt Col James T. Moore for their patience and understanding. I

would also like to thank those whose work this research was based on: Capt Timothy D.

Gooley, who was also my sponsor at AFIT, and Capt Stanley M. Schalck, who answered

many of my questions about satellite range scheduling and data processing. Thanks are

also due to my classmates and instructors who made the journey here an interesting one.

Not least, I am grateful for the support and encouragement of my wife Lisa. I owe her

much attention and a trip back to Nebraska.

Donald Arthur Parish

fi

Table of Contents

Page

Acknowledgements ii

List of Figures .. vii

List of Tables viii

Abstract ix

I. Introduction ... 1

Problem Description 2

Previous Solution Efforts 3

Computational Complexity 4

Research Objective 4

Overview 5

H. Literature Review 6

Genetic Algorithms 6

Introduction 6

Simple Genetic Algorithm 6

Why GAs Work 9

Permutation Genetic Algorithms 10

Traveling Salesman Problem 11

Blind Traveling Salesman Problem 11

Order-based Crossover Operators 12

Ordering Schema 13

Genetic Algorithms in Scheduling 15

Direct Chromosome Representation 15

111.i

Page

Indirect Representation 16

Scheduling Examples 16

Other Solution Efforts for Satellite Range Scheduling 18

Arbabi's Approach 18

Gooley's Approach 18.

Schalck's Approach 19

Summary ... 19

m. Solution Methodology for Satellite Range Scheduling 21

Formulation 21

Definition of the Problem 21

Small Problem 21

Mixed-Integer Programming Approach 23

Scheduling as a Sequencing Problem 23

Hybrid Approach 25

Algorithm Design and Implementation 25

Overview 25

Assumptions 26

Data Processing 26

Data Structures 27

Schedule Builder Program 28

Genetic Algorithm Implementation 29

GENITOR Parameter Settings 30

Day One Results 31

Overall Implementation 33

Summary ... 33

iv

Page

IV . Results 35

Test Set 35

Experimental Procedure 36

Week One Results 37

Breakdown by Support Type 38

Additional Runs 38

Support Priority 39

Two-Day Scheduling 40

Summary ... 41

V. Conclusions and Recommendations 44

Conclusions 44

Recommendations 45

Minor Improvements 45

Extensions 45

Sum m ary 46

Appendix A. Modified GENITOR Program Code 47

Genetic Algorithm: GENITOR 47

Modified Main program Code 48

Ga global.h Include files 51

Position Crossover Operator 53

Appendix B. Evaluation Function Code 57

Appendix C. Schedule Builder 63

Appendix D. Satellite Range Scheduling Data Processing 69

ASTRO Data 69

Requests and Visibility Windows 69

v

Page

LREQ.PAS 70

HREQ.PAS 70

TOL.PAS 70

CROSS2.PAS 70

RTS.PAS 70

Prepare Time Window Data for GENITOR. 70

Appendix E. Schedules for Week One Data 73

D ay 1 . 74

D ay 2 . 75

D ay 3 . 77

D ay 4 . 79

D ay 5 . 81

D ay 6 . 83

D ay 7 . 84

Bibliography 87

V ita . 89

vi

List of Figures

Figure Page

1. Genetic Algorithm Procedure 7

2. Example of Crossover 8

3. Example of Mutation 8

4. Sample TSP tours ... 11

5. Sm all Schedule 22

6. Schedule Builder Flowchart 25

7. Schedule Builder program flow 29

8. Day 1 Data Convergence 32

9. Vary Population Size for Day I Data 33

10. Vary Selective Pressure for Day 1 Data 34

11. Random Sequence Generation for Day 1 Data 34

12. Week One Data Results 42

13. Low-Altitude Supports given Priority for Day 1 Data 43

vii

Lit of Table.

Table Page

1. Small Schedule Time Windows 22

2. Small Problem Schedule 24

3i. Small Schedule Time Windows 27

4. Results for Week One Data 37

5. Low-altitude Results for Week One Data 38

6. High-altitude Results for Week One Data 39

7. Week One Data with Low-Altitude Supports given Priority 39

8. Low-altitude Results with Low-Altitude Supports given Priority 40

9. High-Altitude Results with Low-Altitude Supports given Priority 40

viii

AFIT/GOR/ENS/94M-10

Abstract

Satellite range scheduling involves scheduling satellite supports in which a satellite

and a specific remote tracking station communicate with each other within a specified time

window. As the number of satellite supports continue to increase, more pressure is placed

on the current manual system to generate schedules efficiently. Previous research efforts

focused on heuristic and mixed-integer programming approaches which may not produce

the best results. The objective of this research was to determine if a genetic algorithm

approach to automating the generation of 24 hour schedules was competitive with other

methods. The goal was to schedule as many supports as possible without conflict.

The genetic algorithm approach attempted to find the best priority ordering of sup-

port requests, and then used a schedule builder program to build schedules based on simple

rules. A schedule was produced for seven days of representative satellite range data with

slightly better results compared to earlier results using a mixed-integer programming for-

mulation. Based on the reported results, the genetic algorithm approach presented in

this research appears to be a competitive approach for generating 24-hour satellite range

schedules.

ix

A GENETIC ALGORITHM APPROACH TO

AUTOMATING SATELLITE RANGE SCHEDULING

I. Introduction

Scheduling is the allocation of resources over time to perform a collection of tasks

(2:2). Many important scheduling problems exist that are of interest to the Air Force. Ex-

amples include allocation of test range resources, airlift scheduling problems, and satellite

communication support scheduling. Many standard scheduling problems may be formu-

lated as mixed-integer programming problems where some decision variables take on integer

values while other variables, such as time, have continuous values. While a mathemati-

cal programming formulation generally guarantees an optimal, or best possible, solution,

the computation times required to find exact optimal solutions may be prohibitive for

practical-sized problems. This is because many scheduling problems belong to the class of

NP-complete problems (6:4).

In such NP-complete problems, the solution time may increase exponentially with

the number of variables. For example, a problem with 10 times the number of variables

as an original problem might take an order of 210 times longer to solve. Because of these

possible long solution times, heuristic techniques are often used to find good solutions in

a reasonable amount of time. Heuristics are procedures which do not guarantee optimal

solutions. They usually, but not always, provide feasible solutions, often require human

ingenuity in their development, and are often quite problem-specific.

Heuristic methods for solving scheduling problems that are less dependent on the

specific problem could be useful in solving problems of Air Force interest. This would be

especially true when the constraints of the problem are difficult to put in mathematical

form. One such method for finding good solutions to scheduling and other optimization

problems is called a genetic algorithm.

Genetic algorithms (GAs) are artificial intelligence search methods based on the idea

of natural selection and evolution. Initially developed by John Holland at the University

1

of Michigan (10), applications include problems in optimization and machine learning.

Although initially applied to function optimization problems, genetic algorithms have also

been applied to scheduling and combinatorial optimization problems. The main strength

of genetic algorithms is their ability to quickly explore a large space of possible solutions

for good, if not optimal, solutions. They differ from many traditional algorithms as their

search is based only on the overall evaluation of a set of parameters. As such, they do not

need to rely on derivative information to proceed. Genetic algorithms are also able to find

solutions where multiple optimal solutions exist (7:2-5).

Problem Description

One particular scheduling problem of interest to the Air Force is the Satellite Range

Scheduling (SRS) problem. The Air Force Satellite Control Network (AFSCN) must sched-

ule over 300 command and control communications per day between nine remote tracking

stations (RTSs) and approximately 100 satellites (8:1-3). Each communication between a

satellite and a RTS is called a support. The satellite supports are necessary to maintain

command and control, tracking, and system tests of the satellites (11:10). The scheduling

of these supports must take place in a time window because each RTS is geographically

separated from the others, and can only "see" each satellite for a limited time during its

orbit. The time window is shorter for low-altitude satellites than for medium- or high-

altitude satellites, as the low-altitude satellites pass out of the line-of-sight of the RTSs

much more quickly than higher-altitude satellites. The longer time window of the higher-

altitude satellites makes scheduling them less difficult than scheduling the low-altitude

satellites.

Each Mission Control Complex (MCC) is responsible for the health, status, and

orbital control of a subset of the total satellites. The composition of the subset depends

on the mission type of the satellite. A MCC determines the length and required time

windows for each support request for their satellites, as well as which RTSs can serve each

request. These time windows may be more restricted than the physical visibility limits due

to mission scheduling requirements. For example, a satellite may need a communication

every hour after an operation is performed.

2

All requests from the individual MCCs are passed on to the range schedulers who

are responsible for making an overall schedule. This schedule must ensure that each RTS

antenna supports only one satellite at a time. The schedulers must also allow for a required

turn-around time between supports to allow the RTS antennas to be reoriented. Down-

time for RTS maintenance is also necessary. The resulting schedule is called the initial

24-hour schedule. The development of this schedule using genetic algorithms is the focus

of this research.

The goal of the initial 24-hour scheduling process is to schedule as many commu-

nication supports as possible in a 24-hour period while satisfying the constraints of time

windows, turnaround time, and scheduled maintenance down-time for the RTSs. If a con-

flict cannot be resolved by the range schedulers, they must de-conflict it with the MCCs

and RTSs involved. If a support cannot be scheduled initially, it may be possible to facil-

itate its scheduling by changing the support requirements, by decreasing the turn-around

time, or by altering other constraints. In the worst case, a support may not be scheduled.

A good scheduling process minimizes the need for this deconfliction process. Although

the current manual scheduling process schedules approximately 95-98% of the requested

supports (8:5-2), the process is time-consuming, and could be streamlined by automating

the development of the 24-hour schedule.

Previous Solution Efforts

Two recent thesis efforts have investigated automation of the 24-hour scheduling

process. Gooley used both a mixed-integer programming (AIP) approach and heuris-

tic scheduling methods to schedule satellite supports (8). As a follow-on research effort,

Schalck improved Gooley's solution by reducing the number of integer variables necessary

to define the problem (14). In both cases, the problem was too large to be solved in its

entirety and had to be decomposed into smaller problems to find a solution in reasonable

time.

3

Computational Complexity

Computational problems are often classified based on their complexity. According

to Garey and Johnson (6:4), problems that are classified as NP-complete can take an in-

ordinate amount of time to solve if the size of the problem is large enough. The general

resource-constrained scheduling problem is in this class. According to Gooley, the SRS

problem is a type of resource-constrained scheduling problem (8:2-9), and a fast (polyno-

mial) solution cannot be guaranteed. Genetic algorithms, which have had some success

in finding good solutions to other NP-complete scheduling problems, may be useful when

applied to the SRS problem.

The mixed-integer programming approach can find optimal solutions for the satellite

range scheduling problem when the number of support requests is small. However, when a

larger problem is decomposed into smaller subproblems, a global optimal solution may no

longer be guaranteed. A genetic algorithm approach may be expected to produce schedules

that are at least as good while meeting the requirement of a short solution time since it

would attempt to generate a solution to the entire problem. Also, a genetic algorithm

approach can be more flexible in handling special case scheduling requests. These issues

are addressed in this research.

Research Objective

The overall research objective is to determine whether a genetic algorithm-based

solution methodology can effectively be applied to the satellite range scheduling problem.

Successful solutions must:

1. Generate feasible 24-hour schedules which schedule the greatest number of support

requests possible.

2. Find solutions quickly. A short solution time is useful in rescheduling as requirements

change.

A secondary objective is to explore the scheduling of special-case requirements. These

include supports which require simultaneous support on multiple RTSs and those that must

be scheduled at fixed intervals. Rescheduling of satellite supports is also a consideration.

4

Overview

Chapter HI is a summary of current literature relevant to genetic algorithm applica-

tions to scheduling problems and includes a review of previous work on the satellite range

scheduling problem. Chapter m explains the methodology used in constructing a genetic

algorithm solution to the satellite range scheduling process and details the implementation

of the solution. Chapter IV presents the results and compares them to past efforts. Finally,

conclusions and recommendations for future work are presented in Chapter V.

5

I. Literature Review

This chapter summarizes current literature on genetic algorithms (GAs) as related

to scheduling problems. It begins with the development of genetic algorithms. Next,

the extension of genetic algorithms to combinatorial optimization problems is reviewed.

Discussion then turns to applications of genetic algorithms in scheduling problems, espe-

cially to problems with similarities to the satellite range scheduling problem. Finally, past

research efforts in satellite range scheduling are discussed.

Genetic Algorithms

Introduction. Genetic algorithms were developed by John Holland as part of his

artificial intelligence research on how artificial adaptive systems can evolve, or change,

in response to their environment in order to solve problems (10). His ideas were based

on the biological theory of evolution where variations in chromosomes, or genetic codes,

result in different traits of the individual. These traits of an individual in turn result in

a level of performance, or fitness, of an individual. Usually, the more fit individuals in a

population survive from one generation to another and reproduce. Sexual reproduction by

two individuals produces individuals with new chromosomes formed by a combination of

the chromosomes of its parents. If a child inherits good parts of chromosomes from each of

its parents, it has a higher level of performance than the parents. Through "survival of the

fittest" and reproduction of high-fitness individuals in each generation, the population as a

whole tends to evolve towards higher levels of fitness. The artificial version of this process

is called a genetic algorithm. It does not seek to exactly simulate biological evolution, but

the concepts of biological evolution are used to find good solutions to difficult problems.

Simple Genetic Algorithm. Most genetic algorithm work is based on the simple ge-

netic algorithm as developed by Holland (10) and described by Michalewicz (13). Figure 1

illustrates the process and a brief review follows.

Coding. The first, and generally most difficult, step of any genetic algorithm

is to choose a proper coding to map the problem solution space into a genetic string,

6

Generation tS Generation 01
Mutation00111 11100 01100

01010 Selection 00l10> Crsoe ' ii010

Fitness Roulette WheelFvnhlatinn

F(00111) = 0.1 Almndividuall
F(11100) = 0.9 E*Individual2
F(01010) = 0.5 *Individual3

Score

Figure 1. Genetic Algorithm Procedure

or chromosome, and to randomly create an initial population of individuals with varying

strings. In the simple genetic algorithm, this coding is a binary string of zeros or ones.

For function optimization, groups of binary digits are mapped so as to translate to a real

number parameter representing the function value (13:19-20).

Evaluation and Selection. The strings in the population can be evaluated

for their fitness relative to other strings in the population by entering their parameters

into an evaluation or fitness function. The best strings reproduce by mating with each

other to produce offspring for the next generation of the population. In the simple genetic

algorithm, selection is governed by a "roulette wheel" selection operator. Each string has

a probability of reproducing in proportion to the ratio of its fitness and the total fitness

of the population. As in Figure 1, these ratios can be shown as pieces of a circular pie.

New strings are selected for reproduction by randomly "spinning" the wheel. The strings

whose proportion of the pie are greatest should, on average, be selected more often than

the less-fit strings.

7

Other selection rules can be used (13:62). These include selection by ranking, where

instead of a continuous scale based on fitness the strings are ordered, or ranked, by their

fitness. The higher-ranked strings are given a greater chance of reproducing than average

or low-ranked strings. In this way, the more fit individuals tend to reproduce.

Crossover Operator. During mating, two strings swap part of their "genetic"

material. The children of these matings have parts of each of their parent's string. The

swapping of genetic material, called crossover, allows for new child strings to be created,

combining good aspects of their parents. The resulting strings with above-average fitness

tend to survive and prosper, while those with below-average fitness tend to die out. An

example of crossover is shown in Figure 2.

Mates Children

"- Crossover point

Figure 2. Example of Crossover

Mutation. Mutation randomly changes part of the string of a child to help

maintain a diverse population. It is not as important as crossover in some applications

since it merely acts as a type of random search (7:14).

Input Result

SMutation Poin

Figure 3. Example of Mutation

8

The general genetic algorithm thus consists of three steps which are repeated for

each generation: evaluation/selection, crossover and mutation. These steps continue until

termination conditions, such as some predetermined number of generations, are met. Often

the genetic algorithm ends when the population converges: all strings evaluate to the same

fitness (13:56). This string or strings may be the best answer, but a genetic algorithm may

often converge to a suboptimum, in which case the population has prematurely converged.

The major variables controlled by the experimenter to combat premature convergence are:

population size, type and probability of crossover, type and probability of mutation, and

selection operators (7:106-124).

Population Size. A genetic algorithm population contains a fixed number

of strings. This number is called the population size. The population size affects the

convergence rate of a genetic algorithm by controlling the variety of genes in the population.

A smaller population may converge quickly, but usually to a sub-optimum. A larger

population converges more slowly, and usually, but not always, finds a better final answer.

Although the basic procedure is simple, the framework of a simple genetic algorithm

has been successful in solving a wide range of problems in function optimization and has

been extended to other types of problems such as combinatorial optimization (13:165,193).

Why GAs Work. Although there is no complete formal theory to explain the

operation of genetic algorithms, several hypotheses which partially explain their power

have been advanced (13:51). The point they make is that in each generation, the genetic

algorithm combines good partial solutions in the genes of parent chromosomes to find

even better solutions in child chromosomes. The following discussion briefly describes

these hypotheses. A more formal treatment of genetic algorithm theory is available in

Goldberg's text (7).

Schemata and Schema Theorem. A schema is a pattern of values in a gene

with the alphabet 1,0,*, where "*" is the "don't care" symbol matching any position. For a

chromosome to include a particular schema it must match the schema values. For example,

the chromosome (01101) contains 32 schemata. These include: (0**01), (*.****), (01101),

9

(*****), (0*1*1). The defining length of a schema is the distance between the outermost

non-* symbols. The order of a schema is the number of non-* symbols contained in the

schema.

Holland's schema theorem was the first rigorous explanation of how a simple genetic

algorithm works. The schema can be thought of as representing the partial solutions in

chromosomes and Holland concluded that genetic algorithms manipulate schemata when

they execute (13:91). In the simple genetic algorithm, individuals reproduce and increase

in proportion to their fitness. The schema theorem asserts that because of this, schema

associated with individuals with above average fitness tend to increase exponentially, while

those schema associated with below average performance tend to occur less often in suc-

ceeding generations (7:32-33).

Building Block Hypothesis. Much of the power of genetic algorithms comes

from finding good building blocks (7:41). Building blocks are highly fit, low-order schema

of short defining length. Because of their short length, these blocks tend to survive, even

under the disruption caused by crossover. "In a way, by working with these particular

schemata (the building blocks), we have reduced the complexity of our problem; instead of

building high-performance strings by trying every conceivable combination, we construct

better and better strings from the best partial solutions of past samplings" (7:41).

Together, the schema theorem and the building block hypothesis help to explain why

genetic algorithms work. However, the hypothesis does not give a formula for designing

genetic algorithms. Instead, most practical information on genetic algorithm design and

performance have come from empirical studies.

Permutation Genetic Algorithms

The simple genetic algorithm with a binary coding is appropriate for many uncon-

strained optimization problems. However, in many order-based problems, the solution may

be specified by a specific arrangement of items. Examples include scheduling problems and

the Traveling Salesman Problem (TSP).

10

Traveling Salesman Problem. The Traveling Salesman Problem is easily stated: a

salesman must visit customers in each of n cities without visiting a city twice (13:165-167).

The objective is simply to travel the least total distance and return to the starting city. A

sample network of cities is shown in Figure 4. The solution to the TSP can be represented

as a list of integer numbers with each integer corresponding to a city, and the cities visited

in the order of the list. For example, a starting solution for a TSP with six cities could be

represented as: A = 1 2 3 4 5 6. This solution visits each city in ascending order from "1"

to "6", returning to "1" to complete the tour. All possible solutions to the TSP can be

Tour I = (123456} Tour 2 = (164235)

5 X

Figure 4. Sample TSP tours

represented as a permutation of the list of integers. A permutation is simply an arbitrary

reordering of a set of items in a list. One permutation of the 6-city problem is A = 1 6 4

2 3 5. Although the ordering of the cities has changed, the number of cities remains the

same and no city values are repeated in the list.

With n cities, there are l possible tours; a TSP with n = 6 has 60 (1) pos-

sible solutions. For a TSP twice as large (n = 12), the total number of permutations

is 239,500,800. The number of possible solutions is obviously incredibly large. Although

smaller problems can be solved via deterministic graph search formulations, most large

TSP problems are solved (non-optimally) using heuristic techniques which take advantage

of distance information between the cities (12).

Blind Traveling Salesman Problem. Note that the TSP being solved by the genetic

algorithm is harder to solve than the typical TSP because it does not use any distance

11

information to solve the problem. "In the blind traveling salesman problem, the salesman

has the same objective with the added restriction that he is unaware of the distance

he travels until he actually traverses a complete tour" (7:170). However, other ordering

problems may not have "'distance" information that can be exploited by a heuristic. As

pointed out by Whitley, "This is important, because it means the method may be used on

sequencing problems where there are no actual distances to measure, but rather only some

overall evaluation of the total sequence" (19:137).

Since genetic algorithms had been applied successfully to other optimization prob-

lems, it seemed natural to attempt a genetic algorithm solution to the TSP. However,

when standard genetic algorithms are applied to the TSP, they have difficulty in finding

good feasible solutions (9). The major problem with a standard crossover operator is that

most solutions are infeasible (i.e., 1 2 2 4 5 6) and the genetic algorithm probably con-

verges on sub-optimal solutions (13:167). Some early attempts used a hybrid technique

to combine genetic algorithm crossover with a repair mechanism to make valid tours (9).

This approach was somewhat successful, but other approaches have been attempted using

order-based crossover operators (13:168-191).

Order-based Crossover Operators. Another approach to solving ordering problems

uses a different representation than the standard genetic algorithm. Instead of binary

digits, an order-based crossover operator uses a chromosome that directly represents a

solution. This chromosome is simply a list of integers; an example is a solution to the

six-city TSP problem described previously (1 6 4 2 3 5).

To exploit the information in the chromosomes, an order-based crossover operator,

like simple crossover in the standard genetic algorithm, preserves part of the first parent

while incorporating information from the second parent. The position of the genes is im-

portant. This contrasts with a standard genetic algorithm where their value is important.

For the benefits of genetic algorithms to be realized for ordering problems, crossover oper-

ators must find other ways of combining information from two parents to build offspring

with better fitness.

12

Although not strictly following the standard schema theorem for binary-based genetic

algorithms, researchers have developed the concept of ordering schemata for order-based

genetic algorithms (7:175-179). In an ordering problem, the absolute or relative positions

of the items are important.

Ordering Schema. Ordering schema use a "don't care" symbol "!" to represent

unfixed positions in a string. This is different from the "*" symbol presented earlier which

represented unfixed values in a string. For example, in a position-based schema, the string

(! ! 6 4 ! !) represents cities 6 and 4 in the third and fourth positions, with the "!" position

filled arbitrarily from the remaining cities. Possible strings with this position schemata

include: (51 6 423) ,(256 413),(326 451).

Another ordering schema uses relative ordering. As described by Davis(5:79):

It is important to understand that what is being passed back and forth here
is not information of the form "node 3 is in the fifth position." Instead this
operator combines information of the form "node 3 comes before node 2 and
after node 7." The schemata in a n order-based representation can be written
in just this way. Let us denote the nodes in a permutation by their indices.
The chromosome (5 1 6 4 2 3) contains a number of schemata, including (5 4),
(1 4 2 3), (5 6 3), and (5 1 6 4 2 3).

New crossover operators were developed that could work with ordering problems.

Examples include Partially Matched Crossover (PMX) (7:154), position-based crossover

(16:343), and edge-recombination (19). These methods attempt to retain the benefits of

crossover while maintaining feasible solutions. Two of these operators are described below.

PMX. PMX was developed by Goldberg for use in solving TSPs. He

describes the operator using a ten-city problem as an example (7:171). Each city is visited

in ascending order; a sample permutation is: (1 2 3 4 5 6 7 8 9 10).

Under PMX, two strings (permutations and their associated alleles) are aligned,
and two crossing sites are picked uniformly at random along the strings. These
two points define a matching section that is used to effect a cross through
position-by-position exchange operations.

To see this, consider two strings:

13

A = 9 8 4 132 10

B =871 21 9546

PMX proceeds by positionwise exchanges. First, mapping string B to string
A, the 5 and the 2, the 3 and the 6, and the 10 and the 7 exchange places.
Similarly mapping string A to string B, the 5 and the 2, the 6 and the 3, and the
7 and the 10 exchange places. Following PMX we are left with two offspring,
A' and B':

A' = 9 8 f2_3I1I0116 5 7

B'= 8 10 1556-J9 2 4 3

where each string contains ordering information partially determined by each
of its parents (7:171).

Position-based Crossover. Another crossover operator, position-based crossover,

was developed by Syswerda (16) and is called uniform order-based crossover by Davis (5).

This operator attempts to preserve information about the relative ordering of elements

in each of the parents. Several random positions are selected from each parent. These

positions are inherited by one child. The other positions in this child are inherited in the

order they appear in the other parent, skipping over all those included by the first parent.

For example, using the strings used to illustrate PMX, first generate a bit string that is

the same length as the parents:

Sf= 9 8 4 5 6 7 1 3 2 10

0 1 10 0 10 0 1 0

B = 8 7 1 2 3 10 9 5 4 6

Next, fill in some of the positions on Child 1 by copying them from Parent A wherever a

"1" appears in the binary template.

Child I= - 8 4 - - 7 - - 2 -

0110010010

A list of the elements in Parent A associated with "0" is made, and permuted to

appear in the same order as in Parent 2. These permuted elements fill in the gaps in Child

1 to complete crossover.

14

List of elements associated with "0": (9,5,6,1,3,10)

Permuted in order of Parent 2: (1,3,10,9,5,6)

Child 1 = 1 8 4 3 10 7 9 5 2 6

A similar process is used to create a second child, but with the roles of Parent A and B

reversed.

Although PMX and position-based crossover are effective for ordering problems, they

process different kinds of ordering schema. PMX tends to respect absolute city position,

whereas position-based crossover tends to respect relative city position. Davis explains:

The information that is encoded here, however, is not a fixed value associated
with a position on the chromosome. Rather, it is relative orderings of elements
on the chromosome. Parent 1 may have a number of elements ordered relatively
well. Uniform order-based crossover allows Parent 2 to tell Parent 1 that others
of its elements should be ordered differently. The net effect of uniform order-
based crossover is to combine the relative orderings of nodes on the two parent
chromosomes in the two children (5:79).

These crossover operators are mentioned because they were used during the imple-

mentation of this research. They are effective for problems where ordering is important.

PMX is more important where absolute position matters, while position-based crossover

is more effective where a relative ordering is more important.

Genetic Algorithms in Scheduling

Many recent papers involving genetic algorithms deal with scheduling problems. Two

main approaches to solving scheduling problems with genetic algorithms have been devel-

oped: direct chromosome representation and indirect chromosome representation.

Direct Chromosome Representation. Bruns advocates a direct chromosome rep-

resentation for scheduling problems. In a direct problem representation, the production

schedule itself is used as a chromosome. No decoding procedure is therefore necessary. The

extended chromosome representation requires the construction of domain-specific recom-

bination operators (4:355) and would therefore be problem-specific. In this case:

15

The sequence of the items within a chromosome is of no importance. To deter-
mine the quality of a chromosome any arbitrary evaluation function that has
been used in traditional scheduling approaches is applicable without any prior
transformation. (4:356)

According to Brans, this approach should perform better than domain-independent

operators, although he admits he cannot rely on any theory (4). It also involves creating

custom crossover operators for each problem, which may be difficult. However, this ap-

proach has the advantage that the genetic algorithm is allowed to search the entire solution

space, not just the ordering of the requests.

Indirect Representation. An indirect representation may also be referred to as a

hybrid technique (7:202) where part of the problem is solved with the genetic algorithm and

the other is solved using a deterministic routine. The first part is a sequencing problem,

solved by the genetic algorithm, which orders each job request in a list. The second part

is a schedule builder which takes each job, in the order of the list, and attempts to place

each job request in a place in the schedule without overlapping another scheduled job.

Obviously, those jobs earlier in the list are easier to schedule since more room in the

schedule is available.

The schedule builder uses a simple rule to schedule each job; usually, a job is sched-

uled in the first position which meets the constraints of the problem. Although a schedule

builder can use some information to find a good place in the schedule for each job, it is usu-

ally best to attempt the genetic algorithm search for good overall schedules by permuting

the list of supports (16).

Much research on genetic algorithms in scheduling has been conducted recently in

areas such as job shop scheduling and vehicle routing (3:452-459). For application to the

satellite range scheduling problem, resource and sequence scheduling are more relevant.

Two of these are reviewed by way of example in the next section.

Scheduling Ezamples

F-14 Test Range Scheduling. To solve a resource scheduling problem involv-

ing a test laboratory for F-14 fighter aircraft, Syswerda separated the genetic algorithm

16

from the specific problem (16:332). The list of items to be scheduled is represented as a

string of numbers. The genetic algorithm permutes the order of the items in this string to

find the best order in which to schedule the items. Then, given the ordered list of items

produced by the genetic algorithm, a schedule builder program builds a feasible schedule.

The schedule builder is merely a program which attempts to schedule each item in the

order presented by the string. The number of items successfully scheduled is returned to

the genetic algorithm as a fitness score. This type of approach to scheduling assumes that

given a correct ordering of tasks, the schedule builder program can build the best schedule.

Syswerda noted:

One thing that is clearly important, especially with regard to the greedy con-
siderations of a single task, is the position of that task in the list. The closer
the task is to the front of the list, the greater is its chance that it will be placed
into the schedule ... if two tasks both require a scarce resource, the first task in
the list may prevent the second from being scheduled, implying that the order
of tasks is also important. (16:340)

Syswerda's implementation is interesting because he was able to satisfy many schedul-

ing requirements such as priority of items and user preferences for scheduling days. Such

flexibility is important for successful implementation of a scheduling solution.

Coors Scheduling. Much work has been done at Colorado State University on

developing genetic algorithms for application to the Traveling Salesman Problem and some

scheduling problems. Whitley developed a genetic algorithm called GENITOR (described

in Chapter HI, and used for this research), and Whitley and Starkweather developed an

order-based crossover operator called genetic edge recombination for use in solving traveling

salesman problems. Along with such theoretical developments, they also applied genetic

algorithm solutions to a warehouse/shipping scheduler at Coors (15:74), and a production

line scheduler at Hewlett-Packard (18:358-360).

From this research Whitley generalizes the application of genetic algorithms to schedul-

ing problems in general:

a broad class of scheduling problems can be viewed as sequencing prob-
lems. By optimizing the sequence of processes or events that are fed into a

17

simple schedule builder, optimization across the entire problem domain can
be achieved. Schedules have not always been viewed this way because there
has not existed a general purpose mechanism for optimizing sequences that
only requires feedback about the performances of a sample sequence... Thus, a
"genetic" approach to scheduling has the potential to produce some very gen-
eral scheduling techniques, and could be the foundation of a general purpose
approach to sequence scheduling. (18:358)

For this research, an approach similar to that used by Syswerda in the F-14 test range

scheduling problem seems promising, as it does not require a custom chromosome. Hence,

existing genetic algorithm packages, such as GENITOR, may be used for implementation.

This approach only requires selecting an ordering crossover operator and constructing a

schedule building program to simulate the scheduling operation. As described in the next

chapter, such a strategy can be easily formulated.

Other Solution Efforts for Satellite Range Scheduling

Solutions to the satellite range scheduling problem have been studied recently. These

include an effort by IBM, and two thesis efforts at the Air Force Institute of Technology

(AFIT). These efforts used mixed-integer programming and heuristic approaches to find

solutions.

Arbabi's Approach. The first study of automating satellite range scheduling took

place during the 1981-84 time period when IBM conducted a study to determine the

feasibility of automating satellite range scheduling (1:271-277). Arbabi concluded that

a mixed-integer programming approach was not feasible for problems with more than 50

requests. Instead, he developed an approach called Continuous Time Scheduling (CTS).

The procedure was not described in detail, as it is apparently proprietary, but it used a

heuristic approach. This procedure reportedly scheduled 92% of the requests for one day

(1:277).

Gooley's Approach. Gooley used both a mixed-integer programming approach

and heuristic scheduling methods (8). The satellite range scheduling problem was success-

fully formulated as a mixed-integer program (MIP), but the number of integer variables

18

prohibited direct solution. To reduce the number of integer variables, Gooley divided the

problem into two mixed-integer programs which scheduled low-altitude satellite supports

(the MIP could handle up to 85 low-altitude supports at once). He then used heuristic

insertion and interchange techniques to schedule the medium- and high-altitude satellite

supports. Using this method, a test set of problems was solved in under 20 minutes with

approximately 92% of all requested supports scheduled (8:5-2).

Schalck's Approach. In a follow-on thesis effort, Schalck improved on Gooley's

solution by reducing the number of integer variables needed in the MEP formulation. By

doing so, one MWP solution scheduled all low-altitude supports for one 24-hour period.

Solution times for scheduling the high-altitude satellites in one 24-hour block was too long,

and was reduced to about 30 minutes by scheduling high-altitude supports in two 12-hour

blocks. The resulting solution scheduled approximately 98% of requested supports (this

number is not directly comparable to Gooley's results because of differences in how the

support requests were generated).

The mixed-integer programming approach taken by Gooley and Schalck is the best

approach for the satellite range scheduling problem when the problem is small enough to

be solved by the mixed-integer program, since such an approach should find an optimal

solution. However, by decomposing the problem into separate problems, an overall optimal

solution may no longer be guaranteed. For example, splitting the requests into two blocks

means that support requests near the division point may not be scheduled. A genetic

algorithm approach may produce better schedules while meeting the constraints of a short

solution time becanse it would attempt to find a solution to the entire problem at once.

Although the genptiý, algorithm approach is not guaranteed to find an optimal solution,

it can attempt to find good solutions. Also, a genetic algorithm approach may be more

flexible in handling additional constraints for special scheduling requests.

Summary

This chapter summarized the development of genetic algorithms including the stan-

dard genetic algorithm and variants. The extension to order-based genetic algorithms

19

allows good solutions to some combinatorial optimization problems, such as the TSP. This

in turn allows applications of genetic algorithms to scheduling problems by dividing the

algorithm solution between a deterministic schedule builder and a genetic algorithm. Fi-

nally, past research efforts in satellite range scheduling were reviewed, with the conclusion

that better solutions may be found by scheduling the entire day's schedule in one time

block instead of decomposing the problem into smaller time blocks. This may be done

with a genetic algorithm based approach.

20

III. Solution Methodology for Satellite Range Scheduling

This chapter presents a review of the satellite range scheduling (SRS) problem, fol-

lowed by the development of a genetic algorithm-based scheduling strategy. By formulating

the scheduling problem as a sequencing problem rather than as a mathematical program, a

straightforward solution by an order-based genetic algorithm is possible. The chapter ends

with a review of the implementation of the approach using the genetic algorithm package

GENITOR.

Formulation

Definition of the Problem. In the SRS problem, satellite communication supports

compete for RTS (remote tracking station) time in a 24 hour schedule. Each support must

be scheduled in a restricted time window at certain RTSs due to visibility and scheduling

requirements. For the low-altitude satellites, the requested support length fills the entire

window. For medium to high altitude satellites, the time window is more flexible, as a

tolerance for the beginning of the support is allowed for scheduling. Although each low-

altitude support requires a fixed time window at one RTS and fills a time-window, the

scheduling task is eased as most RTSs have two sides (antennas) capable of supporting

communications. The RTS sides can support a satellite support simultaneously; if a satel-

lite is visible to an RTS, it can be supported by any one of the available sides at the RTS.

In addition, most medium-to-high altitude satellites are visible to more than one RTS. This

fact, combined with the more flexible time windows of these satellites, makes scheduling

them easier than scheduling low-altitude satellites.

Small Problem. An example set of time windows for a small set of five support

requests is shown in Table 1. "Spt" is an arbitrary support number, "Begin" is the starting

time for the window, "End" is the ending time for a window, "Length" is the actual service

time needed, and "TAT" is the setup time required before a service time can begin. These

supports are all serviced by RTS "POGO-A."

This sample time window data can be used to illustrate the satellite range scheduling

(SRS) problem. This small problem is simplified since a real day's schedule would include

21

S,', Begin Ij End I Length TAT fl
11 13 3 1
2 15 22 3 2

3 7 17 3 1
4 1 10 3 1
5 2 8 3 2

Table 1. Small Schedule Time Windows

over 300 supports, nearly all of which would have alternate windows for scheduling. These

alternate windows could come from different antennas or sides at the same RTS, or from

different RTSs. In addition to the table, this information is shown graphically in Figure 5.

POGO-A

5-

4-

Supports 3 -

2- Key:

1 -- M Turn Around Time1{Service Time
Time Window

5 10 15 20

Time (minutes)

Figure 5. Small Schedule

The horizontal axis shows time in minutes, the vertical axis shows the supports by

support number, and the entire chart is for RTS POGO-A. A problem with more than

one RTS could be represented by more than one chart. In Figure 5, the time window is

represented by a thin line, while the required TAT and service time is shown by the boxes

(darker pattern for TAT). Such a representation clearly shows a schedule. The schedule

22

for the example successfully schedules all supports with no overlap of the support times

and no violation of time windows. The TAT for support 5 is outside the service support

window, but this is legal as no communications take place at that time, only set up for a

support.

Mized-Integer Programming Approach. Previously, the SRS problem has been

formulated as a mixed-integer programming (MIP) problem (Gooley and Schalck). For a

problem with a small number of variables, this is the best approach because an optimal

solution can be found. But, as the number of supports to be scheduled increases, so

does the number of integer variables in the MIP formulation. Because of this increase,

an optimal solution may no longer be available in a timely manner. Gooley and Schalck

address this problem by decomposing the problem into parts. Gooley combined the use of

a MIP formulation with heuristics. Schalck accomplished variable reduction and scheduled

the satellites using an MIP for various combinations of satellites and blocks of time. These

methods produce feasible schedules which are not necessarily optimal.

A MIP solution includes the starting time for each support and the RTS used for

the support. The schedule can then be generated by adding the service times to the

starting times. With this type of formulation, the mathematical program must find the

actual starting times without violating constraints. A MIP solution of the small problem

described in the previous section might begin with support 1 scheduled to start at time

10, support 2 scheduled to start at time 19, and so on, as shown in Figure 5.

Scheduling as a Sequencing Problem. Instead of formulating the satellite range

scheduling problem as a mixed-integer program, this research approaches the problem as

a sequencing problem where a sequence is defined as an ordered list of items. A solution

to a sequencing problem in scheduling determines the "best" order in which to schedule

items using simple rules for placing each item in the schedule. For example, in the satellite

range scheduling problem, the solution is represented as a sequence of supports. In the

small problem, there are five supports. An example ordering is: (5, 4, 1, 3, 2). To build

a schedule from this representation, each support is scheduled according to the order it

appears in the list.

23

In the example schedule, the first support, 5, would be placed in the first available

time segment. The entire schedule is open and support 5 is scheduled at the beginning of

its time window from time 2 to time 5. Note that the turn-around time of two minutes

is scheduled from time 0 to time 2 which is outside the time window. This is valid since

no communications take place during the turn-around time. The schedule is then updated

to reflect that time 0 to 5 is no longer available. The second support in the list is 4. Its

time window begins at 1, but it cannot be placed there because support 5 has already

used minutes 0 to 5. Support 4 is then scheduled from time 6 to time 9 (1 minute TAT;

3 minutes for service). This support remains within its time window which ends at time

9. This procedure repeats for supports (1, 3, 2), and completes a schedule as shown in

Table 2.

Spt Begin If End [Length 1 TAT

5 2 5 3 2
4 6 9 3 1

1 10 13 3 1
3 14 17 3 1
2 19 22 3 2

Table 2. Small Problem Schedule

The actual start and end times for each support were determined by examining the

completed schedule. Thus, all the information needed to define a solution is contained in

the sequence of supports, and can be "decoded" by following simple deterministic rules.

Obviously, such rules are somewhat arbitrary. The "first available" rule, as shown here, is

simple. A rule which attempts to find the "best" place for each particular support would

also work, but at the expense of simplicity and possibly time.

An arbitrary ordering of supports is not likely to produce a perfect, or even good,

solution which schedules all support requests. However, if a solution exists, an ordering

can be found which results in the optimal solution. In many cases, more than one ordering

results in the same schedule depending on the interdependence of each support request. To

find good schedules, an efficient way of generating better alternative orderings is needed.

In this research, a genetic algorithm with order-based crossover operators is used to spawn

24

good orderings of the support requests. Genetic algorithms can quickly search the solution

space, defined as the permutations of the list of items. These permutations can then

be used to build a schedule as described above, and the number of supports scheduled

successfully can be used as a fitness measure for the genetic algorithm search.

Hybrid Approach. As noted in the previous section, a schedule can be built from a

sequence of supports using a schedule builder program. This schedule builder is required for

building feasible schedules given a sequence of support by the genetic algorithm. The overall

process is shown in Figure 6. Although some decision information can be incorporated into

the schedule builder to improve local search, the genetic algorithm should do most of the

exploration of the search space. This approach is based on the assumption that if the

supports are entered in the schedule builder in a certain order, the greatest number of

supports can be scheduled. It is reasonable to expect that many orderings of the supports

may exist which produce the same schedule.

Order-based Sequence Schedule
Genetc Algrith Builder

Fitnetis Ag rih Program
Evaluate FaI
Schedule] Feasible

Schedule

Figure 6. Schedule Builder Flowchart

The nature of the genetic algorithm and schedule builder approach allows other

constraints to be imposed on the supports; for example, a request that a support be

handled by a certain set of RTSs on a particular day, or that supports must be scheduled

exactly one hour apart.

Algorithm Design and Implementation

Overview. Implementation of a hybrid approach requires data preprocessing of

satellite requests to generate support request time windows, followed by application of the

25

GENITOR genetic algorithm. The schedule-building evaluation function is used within

GENITOR to produce a given schedule, given a sequence of supports from a GA string.

Assumptions. The research assumes the constraints of the satellite range schedul-

ing problem are those used in the previous efforts by Gooley and Schalck (14:1-7):

1. Requested support times are known in advance.

2. Time windows for satellite visibility are not flexible. The goal of the SRS problem is

to schedule as many supports without having to change the time windows. After the

initial schedule is formed, these constraints may be relaxed to schedule unscheduled

supports. However, it is desired to minimize the number of such changes.

3. Downtimes for RTS maintenance are not included. If known, flexible downtimes

could be added as additional supports. Fixed downtimes could be be scheduled

before regular supports are scheduled.

Use of these assumptions allows comparison of the genetic algorithm results to previous

efforts.

Data Processing. Time windows for each support are processed from the raw satel-

lite visibility and request data in the ASTROS database for a day. The support requests

and time windows are represented as lines in a database with the following information:

Support Number: arbitrary support number

RTS: Remote tracking station and antenna side (example: POGO-A for A-side, POGO-B

for B-side)

Beginning of Time Window: in minutes (example: 0200 is 120 minutes; 2400 is 1440

minutes)

End of Time Window: in minutes

Support Length (minutes): actual service time needed

Turnaround Time (TAT): set up time at RTS needed before service time (20 minutes

for low-altitude satellites; 15 minutes for medium-high altitude satellites)

26

Satellite Identification: IRON (first four digits; identifies satellite)and revolution num-

ber (last three digits; identifies orbital pass)

An example set of time windows is shown in Table 3. This data is the same as

for Table 1, but with fields included for the RTS name and and satellite identification

number.

Spt J RTS Begin End Length TAT If Ident

1 POGO-A 1 13 3 1 2532097
2 POGO-A 15 22 3 2 4774042
3 POGO-A 7 17 3 1 9845009
4 POGO-A 1 10 3 1 3187074
5 POGO-A 2 8 3 2 9757024

Table 3. Small Schedule Time Windows

This time window data is read into data structures at the beginning of a run.

Data Structures. Time window data is read into a structure of arrays. The

information can then be used each time a schedule is built from a sequence of supports.

These array structures keep track of time window alternatives for each support, and allows

the schedule to be filled in as supports are scheduled.

Schedule array. An array named fdled(RTS, time) shows the statas of each

minute (time) for every RTS and antenna combination. A '0' represents an empty minute;

a '1' indicates that minute is filled. This array is updated whenever a support is scheduled

by setting the minutes used by the support to '1. Any set up time is also blocked out of

the schedule.

Support Information. Three arrays specify the requirements of each support:

NumWin(support) is the number of time windows where a support can be potentially

supported. Then the support time length requirements and turn around time are given by

Length and TAT, respectively. This information is used when running the schedule builder

program.

27

For each alternative time window for a support, three arrays give specific information.

BVIS and EVIS give the beginning time and ending time, respectively, of each time window.

RTS specifies the particular RTS used for the support.

Schedule Builder Program. The schedule builder is implemented as a program in

the C language since many genetic algorithms are written in C. It is used as an evaluation

function for the genetic algorithm by building a schedule from a sequence of supports

generated by the GA, as shown in Figure 6. To construct the schedule builder, an insertion

program was written, modeled loosely on those used by Gooley (8), which attempts to

schedule each support into an available time window. Many alternative schedules are

possible, as the insertion rules for the schedule builder are arbitrary. For example, the

simplest implementation attempts to schedule supports to the first available numbered

RTS. A schedule could also be built by assigning a support to an available RTS with

the most open space left in its schedule. The "first available" approach was chosen for

simplicity, and to schedule supports next to each other to utilize the available time at

the RTSs. This approach simply schedules satellite communication supports to the first

available position in time, and across each RTS, starting with the first RTS.

Each support is scheduled in the order it appears in the ordered list of support

requests. The schedule builder tries the first RTS where there is a window for the support.

If this fails, it tries the next until it runs out of windows. If the support is scheduled, the

schedule score is incremented and the space used is blocked out of the schedule. Pseudo-

code for the program is as follows:

Empty schedule
Attempt to schedule each support

Try each window until succeed or exhaust windows
Try each set of empty spaces until succeed or reach end
Update schedule if support scheduled

Update score if support scheduled
Output final score

This can also be represented by a flow diagram, as in Figure 7.

28

Clear schedule

Schedule all Supports

Try each time window

Try each open space

Schedule support
Update schedule

Update score if scheduled

Return total number scheduled

Figure 7. Schedule Builder program flow

This procedure finds the schedule corresponding to a sequence of supports. It is also

used to build a schedule given a sequence of supports or to evaluate a given sequence as

part of a genetic algorithm implementation.

Genetic Algorithm Implementation. To find "good" support sequences, the sched-

ule builder is integrated into a genetic algorithm as an evaluation function. The genetic

algorithm, GENITOR, and associated parameters are described,

GENITOR. Whitley's GENITOR (GENetic ImplemenTOR) code was cho-

sen for use in this research because it has been used with success for other scheduling

problems (17). GENITOR includes crossover operators for order-based genetic algorithms

(edge recombination, order, and PMX) which have been shown to be useful in solving

many scheduling problems (15). GENITOR differs from the standard genetic algorithm as

described in Appendix A.

The evaluation function assigns a raw fitness measure to each population member. In

GENITOR, the fitness is assigned by an evaluation function written in the C programming

language (17). The function input parameter is the chromosome of a population member

which is a list of supports. After attempting to schedule each support in the schedule

29

builder, the function returns a fitness value. In the satellite range scheduling problem, the

chosen fitness measure is the number of supports successfully scheduled.

GENITOR Parameter Settings. In GENITOR, the major settings are the crossover

operator, population size, selective pressure, and mutation rate (for binary-encoded chro-

mosomes):

Crossover. The crossover operator is important in the quality of the answer.

GENITOR includes crossover operators for order-based genetic algorithms as discussed in

Chapter II. These include edge recombination, order, and PMX.

Population Size. As explained in Chapter I1, the population size affects

the convergence rate of a genetic algorithm by controlling the variety of genes in the

population. A smaller population may converge quickly, but usually to a sub-optimum. A

larger population converges more slowly, and usually, but not always, finds a better final

answer. For example, a population size of 30 finds a good answer within 1000 reproductions,

but converges to a worse solution.

Selective Pressure. Selective pressure is a selection parameter specific to

GENITOR. This parameter controls the rate at which a population converges by giv-

ing more reproductive opportunities to higher ranking individuals in the population. In

GENITOR, selective pressure is usually set between 1.0 and 2.0. For example, a selective

pressure of 1.5 gives the top-ranked individual 1.5 times the chance to reproduce than

the median-ranked individual. A lower setting slows down convergence, hopefully allowing

more time for the best solution to emerge. A higher setting drives the GA towards the

final answer more quickly, but often at the expense of the best solution.

Mutation. It is important to keep a diverse genetic pool as the population

converges. Mutation randomly changes part of a chromosome and is usually of less im-

portance than crossover. Mutation was not used in this research because an order-based

mutation operator was not present in GENITOR. The addition of such an operator may

improve results and is discussed in Chapter V.

30

Day One Rests. Various population sizes and selective pressure settings were

tested in GENITOR using the first day of data to determine good parameter settings. In

preliminary tests, all order-based crossover operators in GENITOR were tested. Position-

based crossover found the best answer more quickly than the others. Position-based

crossover was expected to produce good schedules since it explores the relative position

of supports. Since supports are competing for resources, it makes sense that the relative

order of supports in a scheduling list is more important than an absolute position in the

list. Based on these results, the position operator was chosen as the operator for the test

set, although the other order operators would be expected to perform nearly as well. The

edge-recombination operator is tailored more towards the TSP and did not do as well as

the other operators in this scheduling problem because it stresses adjacency information

instead of relative ordering. This agreed with past results using edge-recombination for

scheduling problems (15:74).

For Day One data, a graph of performance is shown in Figure 8. As GENITOR

executes, at a given interval of reproductions it displays the best individual, the worst

individual and the population average. The population has converged when these three

numbers are equal, and little improvement can be expected. Convergence indicates that

the individuals all have the same fitness score; they are either identical or similar enough

to evaluate to the same fitness.

At any time during the run, the GA can be stopped and the best individual found

thus far can be chosen as the best schedule found. Usually, the best schedule is found

before convergence, but there is no way to know this in advance. In the Day One data,

the best schedule was usually found at about 4000 reproductions, while the population did

not converge until about 6100 reproductions. A genetic algorithm run could be stopped

prior to convergence if time is critical.

Vary Parameters. The runs shown in Figures 9 and 10 display the interplay

of exploitation versus exploration in a genetic algorithm solution (7:37). A high selective

pressure or a small population size leads to quick convergence of the population. This

exploitation of the best individuals found so far often leads to a quick, but less satisfactory

31

Population Size 200; 1.5 Pressure

U 5 0

n

C

0
h30 2000 4000 6000 8000

Best

Bost U Worst Average

Figure 8. Day 1 Data Convergence

solution. On the other hand, a larger population with lower selective pressure encourages

population diversity longer, but at the cost of slower convergence.

Repeated Runs. Since a GA has random components, a set of 10 runs was

used for the Day One data in order to initially evaluate the variance of the results. Of 322

supports requested, the number of unscheduled supports was 8 in five of the runs and 9

in the other five runs; the average is 8.5, with a variance of 0.28. For this problem, the

difference between runs is minor, and in practice one run should be sufficient for scheduling.

Random Schedule Generation. To give a baseline of the performance of

this work, one might ask how well a random permutation of supports would perform.

To answer this question, an additional run which generated random permutations of the

support list and then used the schedule builder program to create schedules was performed.

It found reasonable results within 8,000 reproductions, with a best solution of 23 supports

unscheduled out of 322. This is not as effective as the best genetic algorithm schedule of

only 8 unscheduled. These results are shown in Figure 11.

32

Convergence as Population Varies
Population Size

U 40 N 1 0 0 0

n 01400-- --s 30

200
dh 1100
c20 i.0
d
u

0
0 2000 4000 6000 8000

Reproductions

Figure 9. Vary Population Size for Day 1 Data

Overall Implementation. The overall implementation of the genetic algorithm-

based approach begins with the processing of raw satellite request and visibility data into

a format readable by the GENITOR main program. This processing is handled by Pascal

programs written by Gooley and Schalck. After processing, the time window and request

data for each support is stored in an array structure which the schedule builder uses to

build feasible schedules.

Summary

This chapter describes how the SRS problem may be solved by scheduling itc -ns in

an order determined by a genetic algorithm. By using this evaluation of each schedule to

determine fitness in an order-based genetic algorithm, better schedules can be developed.

The genetic algorithm package chosen for this research is GENITOR, because of its success

in similar problems. Experiments using the first day of data provide good parameter

settings for the GENITOR genetic algorithm in producing 24-hour schedules. The final

settings are: position-based crossover, population size of 200, and selective pressure of 1.5.

These settings gave a good compromise between the greatest number of supports scheduled

and execution time. These settings are used to produce the schedules in Chapter M1.

33

4 0 ... P re ss u re - 1 .1

U Pressure - 1.3
n

n 30 re s r m .
h •* Pressure - 1.7

e 2o......... U rsue-.d Pressure - 2.0
UI
e 10

d

0
0 2000 4000 6000 8000

Reproductions

Figure 10. Vary Selective Pressure for Day 1 Data

Random Sequence Generation

U EBest
n -•Aviera~ge
s

c
h
e 3 0 . ..
d
U

e
d

20
0 2000 4000 6000 8000

Best

Figure 11. Random Sequence Generation for Day 1 Data

34

IV. Results

In order to evaluate the performance of a genetic algorithm approach to satellite

range scheduling, the schedule builder model described in Chapter EII was integrated into

the GENITOR (17) genetic algorithm. This genetic algorithm was then tested on real

satellite range data. In nearly all cases, the GA-based solution was able to match or

exceed previous results that used a mixed integer programming (MIP) approach.

The primary purpose of this research was to evaluate the performance of the GA-

based solution in scheduling satellite supports. A secondary purpose was to explore the

flexibility of the GA-based approach in handling additional constraints on the scheduling of

supports. Such flexibility would be important in implementing a genetic algorithm-based

approach in the real world. The additional constraint tested here is the priority of different

supports.

The criteria used to judge scheduling results is the number of supports scheduled and

the time required for the solution. Supports not scheduled in the initial 24-hour schedule

by the range schedulers must be deconflicted through coordination with the MCCs. In the

worst case, those supports that cannot be rescheduled by relaxing constraints may have

to be canceled. Short solution times are important if different parameters or priorities are

to be used by the schedulers. Short solution times are also important for rescheduling on

short notice.

Test Set

Scheduling data used in previous research efforts was available and used to test

the hybrid GA approach, and to allow a comparison between these results and results of

previous efforts. This data is taken from the ASTRO (Automated Scheduling Tools for

Range Operations) (1:271) database which is currently used to assist manual scheduling.

The primary data is from the seven day period from 12 Jul 92 to 18 Jul 92. This is

the same data used by both Gooley and Schalck. Each day includes approximately 300

support requests and their associated request windows. Of these, approximately half are

low-altitude satellite support requests.

35

The database contains satellite support requests and the visibility windows of the

requests to remote tracking stations for each day. Pascal programs developed by Gooley

and modified by Schalck were used to to put the requests in a format suitable for further

work. Schalck's processing of the data was used here to allow comparisons to his results.

After processing, the final data tables list the visibilities and requests for each day as shown

in Table 3 of Chapter III. Processing details are available in Appendix D.

Although each day is scheduled separately, supports are allowed to overlap into the

next day if their time window extends into the next day. This is included to match the

approach of Schalck. The genetic algorithm implementation schedules across days by

keeping track of the overlap into the next day and scheduling these overlaps in the next

day's schedule before scheduling regular supports.

The schedule builder code developed in Chapter III serves as the evaluation function

in GENITOR. The schedule builder produces a valid schedule from an ordered list of

supports for each string in the population. The number of supports successfully scheduled

is the fitness of each string. This fitness value is then returned to the genetic algorithm.

The fitness is used by GENITOR to rank a particular schedule in relation to others in the

population. The more fit strings have a higher probability of being selected to reproduce

and exchange their genetic information with other strings through crossover.

Ezperimental Procedure

Tests were conducted in two major stages. The first day's data was tested to find

good parameters for the GA (as shown in Chapter III). These parameters included pop-

ulation size and selective pressure. The primary goal of these parameters is to facilitate

achievement of the best solution within the shortest time, where the solutions are scored

by the number of supports scheduled. Good general settings were sought which would

work well for the data sets. In practice, the general settings would not need to be changed

each time a new set of data is introduced.

36

The final settings included position-based crossover, a population size of 200, and a

selective pressure of 1.5. These settings appear to be robust in giving a good compromise

between the best results and execution time.

These parameters were used to produce schedules for all seven days. Experimental

runs were performed on Sun Sparc-10 and Sparc-2 workstations. Solution times for one

day of data averaged 10 minutes on a Sparc-10 workstation and approximately 24 minutes

on a Sparc-2 workstation. On the Sparc-10, producing 1,000 schedules took approximately

one minute.

Week One Results. Once a good set of parameters was found, schedules for all

seven days of data were produced. The genetic algorithm (GA) results are from GENITOR

with a population of 200, selective pressure of 1.5, and up to 8,000 reproductions. Overall

results are shown in Figure 12 and Table 4. Supports whose time windows extend into

the next day were allowed to be scheduled into the following day. These overlaps were

then blocked out of the available RTS time for the next day. This is done by scheduling

these overlap requests before the normal support requests in the following day's schedule.

The corresponding results from Schalck's mixed-integer programming (MIP) solutions are

included for comparison (14:4-2).

The total number of supports requested and scheduled are shown in Table 4. The

difference between the MIP and GA-based results are labeled "GA-MIP."

Table 4. Results for Week One Data
Day # Requested GA# Scheduled II MIP# Scheduled jf GA - MJIP

1 322 314 312 2
2 302 296 296 0
3 311 307 304 3
4 318 315 311 4
5 305 301 299 2
6 299 292 292 0
7 297 291 291 0

37

The genetic algorithm results compare favorably to the MIP results of Schalck. In

every case, the number of total supports the genetic algorithm schedules is at least as good

as the number of supports scheduled by the MIP.

Breakdown by Support Tjpe. Results are also broken down by low-altitude and

high-altitude supports. As mentioned in Chapter I, low-altitude satellite supports are

usually given higher priority in scheduling since they are more difficult to reschedule. Here

the GA scheduled more high-altitude satellites than in the MIP solution and scheduled

fewer low-altitude satellite supports than the MIP approach. This is due to the fitness of a

schedule being calculated as the total number of supports scheduled without reference to

the support type. Schalck's solution guaranteed scheduling of the greatest number of low-

altitude supports possible because they were all scheduled before attempting to schedule

any high-altitude satellites. This guarantees the scheduling of the greatest number of low-

altitude satellites, but this may not always be necessary. Since set up times for low-altitude

supports may be flexible, adjustment of the low-altitude satellite setup times may allow

scheduling more supports overall.

Table 5. Low-altitude Results for Week One Data

Day Jf# Requested GA# Scheduled IMIP# Scheduled GA- MIP

1 153 147 149 -2
2 137 132 134 -2
3 146 143 143 0
4 142 139 140 -1
5 142 139 139 0
6 144 138 138 0
7 142 138 138 0

Additional Runs

Since one of the advantages of a hybrid GA approach is flexibility, other constraints

on the scheduling of supports should be allowed. The first obvious constraint for inclusion

is the scheduling of priorities for different support types.

38

Table 6. High-altitude Results for Week One Data
Day R # Requested GA# Scheduled IIP# Scheduled GA - MIP

1 169 167 163 4
2 165 164 162 2
3 165 164 161 3
4 176 176 171 5
5 163 162 160 2
6 155 154 154 0
7 155 154 153 1

Support Priority. Low-altitude supports usually take precedence over high-altitude

supports since they are more difficult to schedule. To introduce this preference in schedul-

ing, different fitness scores can be assigned to the different types of supports. As an

example, low-altitude supports were given a score of two for each one scheduled; the value

of high-altitude supports was set to only one. Where a low-altitude support and a high-

altitude support compete for the same position in the schedule, the low-altitude support

should be scheduled. The overall results are shown in Table 7 and in Figure 13. A break-

down by low-altitude and high-altitude satellites is shown in Table 8 and Table 9.

Table 7. Week One Data with Low-Altitude Supports given Priority

Day # Requested GA# Scheduled hU MIP# Scheduled I GA- MIP

1 322 313 312 1
2 302 296 296 0
3 311 307 304 3
4 318 314 311 3
5 305 300 299 1
6 299 293 292 1
7 297 291 291 0

Note that more low-altitude supports were accomplished, although at the cost of a

tradeoff of some high-altitude supports. Note, however, for Day Two, the GA scheduled

two fewer low-altitude supports than the MIP. Upon examination of the schedule, this is

due to some high-altitude satellites from Day One scheduled into Day Two.

This type of priority assignment could also be applied to other situations; even so

far as to give each satellite a different priority. An array of priority values could be used

39

Table 8. Low-altitude Results with Low-Altitude Supports given Priority

Day # Requested I GA# Scheduled I MIP# Scheduled GA - MIP

1 153 149 149 0
2 137 132 134 -2
3 146 143 143 0
4 142 139 140 -1
5 142 139 139 0
6 144 138 138 0
7 142 138 138 0

Table 9. High-Altitude Results with Low-Altitude Supports given Priority

Day # RequestedJ GA# Scheduled T MIP# Scheduled D GA-- RIP

1 169 164 163 1
2 165 164 162 2
3 165 164 161 3
4 176 175 171 4
5 163 161 160 1
6 155 155 154 1
7 155 153 153 0

to provide a different score for scheduling each support. A higher score would indicate

greater scheduling priority for that support.

Two-Day Schedtding. Even with a priority score given to low-altitude satellite

supports, the GA does worse in scheduling low-altitude supports for Days Two and Four.

For Day 2, this is caused by the overlap from Day 1. Since each GA only schedules for

one day, without regard to the following day, overlaps may reduce the overall number of

supports scheduled. The simplest way to overcome this is to schedule two days at once in

one block, with priority given to low-altitude supports.

This was attempted with data from Day One and Day Two. Results were encour-

aging, as the overall number of supports scheduled remains the same, but the number

of low-altitude satellite supports scheduled increased to the same level as the MWP so-

lution. In return, the number of high-altitude supports scheduled decreased. Thus, the

priority scheme, in conjunction with scheduling for two days, succeeded in matching the

40

low-altitude results of the MIP. Note that the genetic algorithm in this case scheduled

two days at once. The solution time was approximately double that for scheduling one

day. This indicates that an increase in the number of supports for a day may be handled

without much degradation in solution time or quality.

Summary

Results using one week of satellite support data indicates the GA can be successful

in scheduling satellite supports. Results match or exceed those returned by the Schalck

MIP approach. Solution times are short, and only one computer run is required.

41

Figure 12. Week One Data Results

INumber Not Schedu led I

10...................[j
6 -

3-

Dayl1 Day 2 Day 3 Day 4 Days5 Day 6 Dayl7

1Low-Afltude Not Scheduled 1

6 --------
[MIj

4w
.... 3G

2... ...
1.
0..

Day ...2 .y Da.. -ay6 Da7--

Hi.hA.ttud Not.cheule

6
... .[...

4 -
..3.. .

Dayl1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Hih-lttue otSc42 le

Figure 13. Low-Altitude Supports given Priority for Day 1 Data

Number Not Scheduled

7-

4-

2

0
Dayl1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Low-Altitude Not Scheduled

6 [..........j...........W......................]5 ---------[.........jE G

2-

.1

0
DaylI Day 2 'Day 3 Day 4 Day 5 Day 6 'Day 7

1High-Altitude Not Scheduled 1

6 - [....................j-......................]......1
5 -......[............. .

4 -

0
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

43

V. Conclusions and Recommendations

Conclusions

The satellite range scheduling (SRS) problem involves scheduling over 300 satellite

communication supports between Air Force Satellite Control Network (AFSCN) satellites

and remote tracking stations (RTS) for a 24-hour period. Scheduling the greatest number

of requests mnimizes the time needed by schedulers to resolve conflicts in the schedule. The

scheduling is currently done manually, with computer aid. Although the current system

schedules approximately 95-98% of the requested supports, automating the scheduling

process may produce better schedules in less time and use less human resources. The

objective of this research was to discover if a genetic algorithm based approach can be

effective in automating the scheduling of the requests for a 24-hour period.

The problem can be formulated as a mixed-integer program, but the size of realistic

problems precludes producing optimal schedules in a timely manner. By partitioning the

original mixed-integer problem into subproblems, Schalck and Gooley found good solutions

(14:4-1), but since they do not solve the entire problem at once, there may be room for

improvement.

For a test set of seven days of scheduling data, the GA solution matched and often

exceeded the results of previous MIP efforts by solving the entire problem at once instead

of decomposing the problem into subproblems. The algorithm scheduled over 96% of

requested supports. Note, however, these results do not include RTS downtimes. Solution

times on Sun Sparc workstations suggest a 24-hour schedule can be produced in under 15

minutes.

These results suggest a genetic algorithm (GA) based method can produce good

schedules for the SRS problem. Although the genetic algorithm-based approach described

in this research appears to be capable of producing good schedules in a short time, much

work remains to be done to implement this automated scheduling approach. Further

refinement of the program code may decrease time needed to provide a schedule. More

importantly, a fully automated scheduler must also schedule other types of supports which

occur in the scheduling process.

44

Recommendations

Improvements to the algorithm involve further modification and testing of the genetic

algorithm with more complicated support requests. The genetic algorithm-based method

is easy to implement and modify since all that is required is a schedule builder program to

build a schedule one support at a time and to evaluate its fitness score. Since this schedule

builder program is easy to test, modifications which allow new constraints can be tested

quickly.

Minor Improvements.

Schedule Builder. If the GA-based algorithm is to be implemented, the

program code for the schedule builder must be improved. Both readability and code

efficiency would lead to better performance and easier modification by users. The program

could also be integrated with the processing of satellite request data to make scheduling a

one step process for the schedulers, from data processing to final schedule output.

Genetic Algorithm. The genetic algorithm implementation in GENITOR

may be improved by adding a mutation operator. Although it does not play as large a

role in the genetic search as crossover, mutation acts to keep variety in the population

by randomly changing the genes of the population. An order-based mutation operator,

such as that advocated by Davis (5:81), would be appropriate for use in this scheduling

algorithm. Also, other genetic algorithm packages could be used besides GENITOR. The

schedule builder program would simply be used as an evaluation function in the genetic

algorithms.

Eztensions. To make the produced schedules more realistic, other types of supports

should be scheduled. RTS downtimes and scheduling priorities should be determined and

included in the schedule. Also, the schedule builder program could be modified to schedule

special requests not currently considered by this program. The most important of these

would involve scheduling long requests by dividing them into shorter requests which may

be scheduled on different RTSs.

45

Summary. A genetic algorithm based approach offers a way of quickly (minutes)

scheduling 24-hour schedules in the satellite range scheduling process. In addition, the

general approach could also be applied to other similar scheduling problems where resources

must be scheduled. These include ICBM crew scheduling and test range scheduling.

46

Appendiz A. Modified GENITOR Program Code

This appendix describes the GENITOR genetic algorithm, and lists the files modified

to use GENITOR with the satellite range scheduling problem. These files include the main

program and include files. Although not modified, the source code for the Position crossover

operator is included since it is used for the final results.

Genetic Algorithm: GENITOR. The code from an existing genetic algorithm was

used for this research. Whitleys GENITOR (GENetic ImplemenTOR) code was chosen

because it has been used for similar problems (17). It includes crossover operators for

order-based genetic algorithms (edge recombination, order, and PMX). These operators

have been shown to be useful in solving many scheduling problems (15).

GENITOR differs from the simple genetic algorithm in two ways. First, instead of

creating distinct generations, it creates only one new offspring at a time. Then, rather than

replacing the parents with the offspring, GENITOR replaces the lowest ranking member.

This approach has been called steady-state reproduction (5:35). It works by first selecting

two parents from the population and producing two offspring. One offspring is randomly

discarded. The other offspring replaces the lowest ranking member of the population. This

new string is then ranked in relation to the fitness of the other members of the population,

and inserted into the population. The new member can then compete for reproductive

opportunities.

The second difference from the standard genetic algorithm is the way fitness is mea-

sured. Instead of relying on raw fitness measures, GENITOR uses relative ranking of

population members to determine reproductive opportunities. Ranking prevents scaling

problems associated with raw fitness values. Scaling problems occur when one individ-

ual is so much better that the others that it dominates the population too soon, causing

permature convergence of the algorithm. To determine the reproductive opportunities of

population members, GENITOR uses linear bias scaling. This linear bias is usually set

between 1.0 and 2.0. For example, a bias of 1.5 means the top-ranked individual has 1.5

times the chance of the median-ranked population member to be selected to reproduce

(15).

47

Modified Main program Code. The following listing is the main program code for

GENITOR, modified for use with the satellite range scheduling problem. At the beginning

of a run, this code reads in satellite time window data and overlap data. During execuation

of the program, it calls tsp eval.c to evaluate schedules. Finally, it stores the best sequence

in the file tourdata.

This main program is modified for use with the Position crossover operator.

/* MAIN Program - 31 Jan 94 */
/* - 1 Feb, 31 Jan: read/write to files */
/* - 28 Jan: add in pre/post processing for overlap */

I* *I
/* Copyright (c) 1990
/* Darrell L. Whitley
/* Computer Science Department */
/* Colorado State University/* *
/* Permission is hereby granted to copy all or any part of */
/* this program for free distribution. The author's name */
/* and this copyright notice must be included in any copy. *//* */

main-pos. c

#include <stdio.h>
*include <ctype.h>
#include <string.h>
#include "ga-random.h"
#include "gene.h"
#include "ga.global.h"
#include "ga.params.h"
#include "ga.pool.h"
#include "ga-selection.h"
#include "ga.status.h"
#include "ga.signals .h"
#include "op.position.h"

Declare evaluation function which tells you
how "good" a particular gene's solution is.
NOTE: the input parameters for the eval

function should always be a gene and
the gene's length

*include "eval-pos .h"
int
main (argc, argv)
int argc;
char *argvy ;

int ij;
GENEPTR mom, dad, child;
FILE *fp;
int **coord-array;
CITY-DATA *city.table;
I* int num-diffs; */

/* Character names for input/output */

48

int daylum;
static char overlap[iO] = {"overlapO"};
static char tourdata[1O] = {"tourdataO"};static char datafile~OJ = {1:datafileO"};

Setup signal handlers.
setupseignal();

Set the global parameters according to command line arguments.

argc--;
argv++;
parseecoumazd.line (argc, argv);

Print Parameter Values

fprintf (stdout, "'n");
print _parans (stdout);
fprintf (stdout, "\n");

Input the day number
and concat to file names

printf("What is the day number (1-7)?");
scant ("XU", ,daylum);
printf('Day Number is Xu\n"J,daylum);
overlap[7] += daylum - 1; /* Adds day number to filonames */
tourdata[8] += dayNum;
datafile[8J += daylum;
printf("%s\n~s\ns\n",tourdata,datafile, overlap);

Seed the Random lumber Generator

srandom(RandomSeed);

Allocate a genetic pool referenced by the global, Pool

if (!(Pool = get.pool(PoolSize, StringLength)))
fatal.error(NULL);

Read in a description of the points to be toured and
create a representation of the distance between them.

/* aakeAdist-array (NodeFile, StringLength); */

Assign schedule parameters to the program

/* #include "data.h" */

Read in data

read-data (datafile,Pool->string-length); /* set = string length */
read.overlap.data (overlap); /* 1/28: read overlap data */

/* for (i=l; i<=18; i++)
printf(" gRTSE[dW=%d, gBeginVis C/d]=%:d, gEndVisE[d]=ld,

gleqLengthMd=%d, gTurnAroundTiae[(Xd=Y \" ,i, gRTS[I] ,i,gBeginVisEi),
i,gEndVis[i], i, gReqLength[i ,i,gTurnkroundTine[i]); ./
/* printf("Initialize genetic pool\n"); */

Initialize the genetic pool with data.

init-pool (SeedPool, Pool, 0, Pool->size, topoeval);

49

/* printt("Sort Initial genetic pool\n"); *1

Sort the initial genetic pool data.

sort-pool (Pool);
/* printft("Allocate temporary storage for parents of reproduction\n"); */

Allocate temporary storage for parents of reproduction, and for child.

no& = get-gone (Pool->string-length);
dad = Setgoene (Pool->string-length);
child = getgoene (Pool->stringlength);

/* printt("Allocate a table to be used with the Orderl (Davis) Operator\n"); */

Allocate a table to be used with the Orderi (Davis) Operator

city-table = get.city.table (Pool->stringlength);

Optimize !

for (/* CurrentGeneration already set
either intialized to 0 in its declaration OR
initialized by a restart of a previous experiment */;
CurrentGeneration < NumberTrials;
CurrentGeneration++){

Choose two genes for reproduction.

get.parents(mom, dad, Pool, linear, SelectionBias);

Call Order operator to create a child

/* printt("Start Order operator\n"); */
if (bitgen()){
/* printf("Atter bitgen = O\n"); */
position (mom->string, dad->string, child->string, Pool->stringlength, city-table);
}
else{
/* printf("After bitgen = l\n"); */
position (dad->string, mom->string, child->string, Pool->stringlength, city-table);
}
/* printt("So, kid, how good are you?\n"); */

So, kid, how good are you?

child->worth = tsp.eval (child->string, Pool->stringlength);

/* printf("Insert new gene into population according to its worth\n"); */

Insert new gene into population according to its worth

insertgoene (child, Pool);

It the StatusInterval parameter was set and this is the appropriate
time, print the population best, worst, mean, and average to stdout

if (StatusInterval kb !(CurrentGeneration % StatusInterval))
showprogress (stdout, Pool, CurrentGeneration);

If the DumpInterval parameter was set and this is the appropriate
time, save the population and key parameters to disk for later
reference (or to restart execution later.

50

if (DumpInterval &M l(CurrentGeneration % DumpInterval))
dump.status (Pool, DumpBase);}

Summarize Results
{
final-pool (FinalPool, Pool, CurrentGeneration);
fprintf (stdout, "\n");
printf ("'ight before print..pool\n");
print-pool (stdout, Pool, 0, 1);
printf ("After print-pool, before tourdata\n");
/*** **e**** ** *

Print out tourdata to file

if (fp = fopen(tourdata, "Wo))
{

printf("Inside print tourdata\n");
for (i=0;i < Pool->string-longth; i++)

{
fprintf(fp,"Xd ",Pool->data[1J.string[i]);}

printf("Its past!\n");
fclose(fp);}

else
printf("Cannot print tourdata file");

}
}

Ga global.l Include files. This file contains the global variables used in GENITOR.

The global variables used to store time window information for each support are included

here as global variables and used in the tsp eval function. Another related Mfie called ga

global external.h is also listed.

/*ga.global.h */
/* mod 9 Feb: add temp LF Num for Priority 0/

/* modified 8 Feb for downtimes; 28 Jan for overlap */

/* Copyright (c) 1990 */
/* Darrell L. Whitley o/
/* Computer Science Department
/* Colorado State University 0/
I* *I
/* Permission is hereby granted to copy all or any part of */
/* this program for free distribution. The authors name 0/

/* and this copyright notice must be included in any copy. 6/
/* */

* These REQUIRED and OPTIONAL parameters can be chosen by the user. *

/* REQUIRED */
int PoolSize;

51

int StringLength;

int NumborTrials;

char NodeFil.[80]; /* contains coordinates of tsp nodes */
/* OPTIONAL */
long RandomSeed;
float Select tonBias;
float Rutatelate = 0.0;
int StatusInterval = 0; /* dump status every nth generation */
int DumpInterval = 0; /* save state of every nth generation */
char SeedPool[80J; /* file containing init data */
char FinalPool [80]; /* file containing final results */
char DumpBase[80J; /* basename of file(s) into

which to dump population */
int NumPop; /* Number of Subpopulations */
int SwapInterval; /* Trials between Swapping of Subpopulations */
int Swaplumber; /* Number of Strings Swapped between Subpops */
int Experiments; /* Experiments must be used in main() */
float CutOff; /* Cutoff value for a given experiment */

/*******,***********,***s..**e.**********,***,*****/

int SequenceFlag = 0; /* if set to 1 in main, insert-uniquegoneo() */
/* will use different criteria for sameness

int CurrentGeneration = 0;
POOLPTR Pool;

/* Schedule Builder Global Variables */

/* [spt] [win] */
int gRTS (7003 [20];
int gleginVis [700] [20];
int gEndVis [700] [20];
int gleqLength[700J;
int gTurnAroundTime [700];
int gBeginSched[700];
int gEndSched [700];
int gNumvin[700J;

int gOverlapBegin [20];
int gOverlapEnd [20];

int gDownlum;
int gDowuRTS[100]3;
int gDownuegin[100];
int gDownvnd[1O0];
int gNumLF;

/* ga-global.extern.h */
/* mod 9 Feb: add temp NumLF for priority */
/* mod 8 Feb for downtime */
/* modified 28 Jan 94 to add overlap variables */

/* Copyright (c) 1990 */
/* Darrell L. Whitley */
/* Computer Science Department */
/* Colorado State University */

/* Permission is hereby granted to copy all or any part of */
/* this program for free distribution. The authors name */
/* and this copyright notice must be included in any copy. */

5*2

52

extern int PoolSize;
extern int StringLength;
extern int IumborTrials;
extern char lodeFile 0;
extera long RandomSeed;
extern float SelectionBias;
extern float NutateRate;
extern int StatusInterval;
extern int DumpInterval;
extern char DumpBase 0;
extern char SeedPool 0;
extern char FinalPool[O;
extern int CurrentGeneration;
extern int lumPop;
extern int SwapInterval;
extern int SwapNumber;
extern int Experiments;
extern float CutOff;
extern int SequenceFlag;

extern POOLPTR Pool;

/* Schedule Builder Global Variables */

extern int gRTS (700) [20);
extern int gBeginVis [700) [20);
extern mnt gEndVis [700) [20);
extern int gleqLength[700J;
extern int gTurnAroundTime [700);
extern int gBeginSched[700J;
extern int gEndSched[700];
extern mnt glunWin[7003;
extern int gOverlapBegin[20);
extern mnt gOverlapEnd[20J;
extern mnt gDownlum;
extern int gDomnRTS (O00);
extern int gDownBegin[100];
extern int gDownEnd[100);
extern int gNumLF;

Position Crossover Operator

This program code is unchanged, but included since it was used in GENITOR to

test the data.

/* Copyright (c) 1990 */
/* Darrell L. Whitley */
/* Computer Science Department */
/* Colorado State University
/* */
/* Permission is hereby granted to copy all or any part of */
/* this program for free distribution. The author's name */
/* and this copyright notice must be included in any copy. */

53

I**-

"• This is the position operator developed by Syswerda *

" (The Genetic Algorithas Handbook, L Davis, ed) and *
" implemented by Susan McDaniel at Colorado State •
"• University. •

"* To use this program include the following lines in •
"* the main.tsp.c file: *

"• This call should only happen once: *

": ret-city-table (Pool->string-length); *

* This code should be in a loop so it is called once *

"* for each recombination: •
"* if (bitgen)) *
• position (mom->string, dad->string, child->string, *
• Pool->string.length, city-table); *
• else *
• position (dad->string, mom->string, child->string, *
• Pool->string-length, city-table); •

• This operator attempts to preserve position *
• information during the recombination process. *

Several random locations in the tou• art le ted *
Salong with one of the parents and tHe cltfes

• those positions are inherited from that parent. *
"* The remaining cities are inherited in the order in
" which they appear in the unselected parent skipping
" over all cities which have already been included in *
"• the offspring. •

"* Example- Position based crossover: •
"• Parent 1: a b c d e f g h i J *
"• Cross Pts: * * * * (Parent 1 selected) *
"• Parent 2: c f a j h d i g b e *

• Offspring: a b c j h f d g i e *

* The cities b, c , f and i are inherited from *
• Parent 1 in positions 2, 3, 6 and 9 respectively. *
* The remaining cities are inherited from Parent 2 as
* follows: Off[IJ = P213J since P2113 and P2[2J have *
* already been included in the child tour. Then *

*going through Parent 2 in order, Off[41 : P2[4J, *

Off (6 = P2(6], Off [7J = P2(6], Off[8J = P2(8] and *
• Off[10] = P2(101.

#include <stdio.h>
#*ncJude <malloc.h>
*include "ga.random.h"
#include "gene .h"
#include "op.position.h"

• FUICTION: get.city-table

• DESCRIPTION: allocates space for the city data table
• the city data table contains the position
• of each city in each parent and also
• has a field which is set when a city has

54

* been included in the offspring tour.

* INPUT PARAMETERS: string length
C
C
* RETURN VALUE: the address of the city table

CITY-DATA *
get-city-table (length)

t length;
{

CITY-DATA *city.table;

/* malloc one extra location so that cities 1-N can be accessed
directly. location 0 will not be used */

if (!(city.table = (CITY-DATA 0) malloc ((length + 1)*sizeof (CITYDATA))))
printf ("get-city.table: Nalloc failure. \n.);

return (city-table);
}

* FUNCTION: position

* DESCRIPTION: performs position crossover operation

* INPUT PARAMETERS: two parent gene strings
C space for child string
* the length of the two strings
* the city table address

* RETURN VALUE:

void position (dad, mom, kid, length, city-table)
GENE-DATA dad[], mom [], kid 0;
int length;
CITY-DATA *city.table;

int num.positions;
int i, pos, dad-index, kid-index;

for (i=l; i<=length; i++) { /* initialize city table C/

city-table[i].used = 0;

/* select *positions that will be inherited directly from parent C/

num.positions = randomain (2*length/3, length/3);

for (i0; i<num.positions; i++) {
pos = randomain (length - 1, 0); /* select position randomly */
kid[pos] = mom/pos]; /* transfer cities to child */
city-table[mom[pos]].used = 1; /* mark city used */

dadindex = 0;

kid-index = 0;

while (kidindex < length) j
if (!city-table momtkid-index]] .used) (/* next position in kid filled*/

if (!city-table[dad/dad-index]] .used) { /*next city in dad not used*/
kid/kid-index] = dad[dad-index]; /* inherit from dad C/

dad-index ++; /* increment indexes */
kidindex ÷+;

55

else { /* next city in dad has been used */
dad_index ++; /* so increment dAd index */

} I* end else *I
} /* end if*
else { /* next position in kid in filled */

kidindox ++; /* so increment kid index */
} I*end else*/

} I* end while */

}

56

Appendiz B. Evaluation function Code

The tsp eval program is a procedure which builds and evaluates a schedule. It takes

as input an ordered list of supports to schedule and then, in the order of the list, attempts

to schedule each support into a schedule. The function returns a fitness value to the main

genetic algorithm.

The schedule builder code includes three procedures: ScheduleWindow, Schedule-

Support, and tsp eval. Tsp eval is the main procedure. It is called from GENITOR,

and returns the evaluation of a schedule. Tsp eval first clears a schedule, schedules any

overlaps from the previous day, then attempts to schedule each support in the order given

in the sequence passed to it from GENITOR. ScheduleSupport attempts to schedule each

support in the available time windows. Each time window is attempted by calling the

ScheduleWindow routine. If a support is scheduled in a window, the space taken by the

support is blocked out of the schedule. Then ScheduleSupport returns a fitness value to tsp

eval. This fitness value is normally one, but can differ if a priority scheme is used to weight

the scheduling of different types of supports. After all supports have been scheduled (or

failed to be scheduled), tsp eval returns a fitness score based on the number of supports

scheduled to the main GENITOR function.

/* SCHEDULE BUILDER PROGRAM */
/* 31 Jan 94: auto file generation */
/* 28 Jan 94 Eval_tsp.c -- position crossover
/* 28 Jan: add overlap variables */
/* This modification allows supports to be scheduled past the end of the day */
/* if allowed by the supports windows */
/* do this by increasing filled array from 1470 to 2100, and take off end */
/* conditions */
#include <stdio.h>
#include <math.h>
#include "gene.h"
#include "op.position.h"
#include "ga-global-extern .h"

int
ScheduleWindow (spt, win, filled)
int spt;
int win;
int filled[21] [2100];

/* Declare Variables */
int

bVis, /* gBeginVis - gTurnAroundTime : 0 if latter <0 */
eVis, /* ending visibility */

rLength, /* RegLength + TurnAroundTime */
endSpt, /* Flag for Support either scheduled or run out */

57

J. /* Counter for support index being scheduled */
1, /* Counter for filling in scheduled blocks 4/

/* apt: Index for support 4/

minute, /* current time interval 4/

length, /* length so far */
scheduled, /* binary: 1 or scheduled; 0 for not schedule ./
beginSched,endSched,
start, /* current start of support */

tat, /* turn around time */
rts; /* RTS number -- passed from global gRTS[support) */

/* scheduledPtr : indicates if scheduled or not 4/
/**** Initialize Variables *4444/
scheduled = 0;
length = 0;
endSpt =0; /* initialize flag; end when it = 1*/

/* Initialize Starting Point, Required Length with TAT */
rts = gRTS[apt] [(in);
tat = gTurnAroundTime[(pt];
bVis = gBeginVis[spt] [win) - gTurnAroundTime[apt) + 20
eVis = gEndVis~spt] [win] + 20;

/* add twenty for overlap area 4/
it (bVis < 0)

tat = bVis + tat;
bVis = 0; /444* reduces tat if near boundary at start *44/

rLength = gReqLength[spt) + tat;
minute= bVis + 1; /* my blocks are filled to the right of position */
start = minute; /* Starting position of current attempt 4/

while (endSpt != 1) /* schedule until successful or end 4/

it (filled[rts] [minute) == 0) /* if current space free 4/
length += 1; /* increment length if space free 4/

else

length = 0; /* reset to zero if space is filled 4/
tat = gTurnAroundTime[(pt];

rLength = gReqLength[spt] + tat;
start = minute+1;

I
if (length == rLength) /* then schedule the support here 4/

beginSched = minute - gReqLength[spt] - 20;
endSched = minute - 20;

scheduled = 1;
for (1 = start;l <= minute;l++)

filled[rts] [1) = 1;

it ((minute == aVis) 11 (scheduled == 1))
endSpt = 1;

minute += 1;
}/* End Support */
/* fprintf (stdout, "scheduled = Xd\n", scheduled); */
/*if(scheduled == 1)

printf("SCHEDULE Support %d in window %d at RTS %d, begin: Yd
end: Wd\n',

apt, win, rts, beginSched, endSched);
else

printf(" Support %d not scheduled in window YA\n", opt, win); 4/

58

return(.choduled);
} * end ScheduleVindou *

59

int
ScheduleSupport (apt, filled)
int apt;
int filled[21] [2100);{
int i, win, flag;
int ached; /* flag = I if scheduled , 0 ow */
ached = 0;

win = 1; /* counter for number of windows tried */
flag - 0;

while (flag != 1)
{

ached = Scheduleuindow(sptwin,filled);
/* printf ("ached=d, gNumVin[[O]=%d\n", sched,spt,glumVin[sptJ); */

if ((ached == 1) II (win == glumuin[spt]))
flag =1;

win +=I;
}
/* if (sched=0)

printf("*** Support %d lOT SCIEDULED!***\n",spt); */
return(sched);

/, .*********.e******e************e*********e****e************e**,/

float
tsp-eval (order, num.supports)
GENE-DATA order[] ;
int nunmsupports;
{

/* Declare Variables */
int

filled[21] [2100), /* time units in schedule are filled[rts] [time) 4/

j. /* Counter for support index being scheduled */
k,

apt, /* Index for support */
numScheduled, /* number of supports scheduled */
minute, /* counter for current time */

rtslum; /* max number of RTSs o/

/**** Initialize Variables *****/
rtslum = 20; /* must be one less than max cause of arrays 0-19 */
/*"printf("rtslum = %d\n", rtslum); e/

for (k = 1;k <= rtslum;k++){
for (minute = O;minute <= 2100;minute++){

filled[k] [minute) = 0;
/* printf("filled[Ydld [Yd•= Yd\n" ,k,minute,filled~k] [minute]); */}

I
/* Schedule the overlaps first, before the real supports */
for (k = 1; k <= rtslum; k++)

for (minute gOverlapBegintk]; minute <= gOverlapEnd[k]; minute++)
filled[k][minute) = 1;

numScheduled = 0;

/* Schedule each Support in Priority Order e/
for (j = O;j< num.supports; j++) /* Try to schedule support */{

apt = order[j];

60

/* printf("Start SS Order[X4J = Mda",j, order[jJ); *
-u-acheduled += ScheduleSupport(apt. filled);

} * end nun-saupports */
/* fprintf (stdout, "nun-supports = Mdu". nun-s.upports); .
/* The GA wants to MINimize something.., so do Mlax poss - actual *

/* printf("\n lumber Scheduled=
numSchaduled); */

return(nnu...upports - numScheduled);
} /* End Eval s

FUNCTION: read-data
*DESCRIBE: read in data
*INPUT PARAMETERS: filename of list of satellite support data

*RETURN VALUE: none
*CALLS: get...coord-array

*read...coords
g et-5bD..dist-.array

*calc-distances

void
read-.data (coord..file, nua...upports)
char coord.fileO];
mnt num-.supports;

mnt i;
mnt spt;
mnt rts;
i~nt b~ing, eVia, rLength,tat;
FILE *fp;
printf(Ilcoord..file is: %s", coord..file);

for Ci~l; i<=num-.supports; i++)

gumaWin[iJ = 0; /* set number of windows [spt] 0 *
/* printf("gNumwin[%d]=%d\n" ,i,glumVin[i)); s

if Cfp = fopen(coord..file, 11r1)

while Cfscanf(fp, "%d %d %d %d %d YAd", &apt, krts, kbVis,
keVis,krLength, ftat) !=EOF)

gNumWin~aptJ +=I;
gRTS [sptJ Egluvmin~pt3) = rta;
gBeginVis[sptJ[gNumuin[sptJJ bVis; /* add for overlap *
gEndVis[sptJ[glumuin~spt1) = eVis; /* add for overlap s
gReqLength[optJ = rLength;
gTurnAroundTiae [eptJ = tat;
/s printf ("apt = %d, rts= %d, Bvis= %d, Evis = %d, ReqLen = A,

TAT = Yd\n", apt, gRTS [apt) [gNumWin~spt)), gBeginVias [pt) [glumWin[spt)),
gEndVis [sptJ EgNumuin [apt)), gReqLength (apt], grurnkroundTiae [apt) ;*

/s printf(C-----gNum~in[Yd) = %d\n", apt,glum~in[sptJ); *

f close (fp);
/* for (i=1; i<= nuu..supports;i++)

printf("gluzuiin[%~d2 = %d\n11,i,gNum~in[i));

else

61

fatal-error ("Cannot reed input city file dataf ile");

FUNCTION: read-.overlap...data

*DESCRIBE: read in data
*INPUT PARAMETERS: filename of list of satellite support overlap data

*RETUJRN VALUE: none

*CALLS: get-.coord-.array
* rad..coords

g et..2D-.dist..array
*calc..distances

void
read-.overlap-.data (coord..file)
char coord..file[0;

int i;
mnt rts;
mnt bVis, eVis;
FILE *fp;

if (fp =fopen(coord-file, "r"))

while Cfscanf(fp, ".d %d4 %d", Arts, kb~is, keVis)!=EOF)

gaverlapBegin~rtsJ = bVis;
gOverlapEnd~rts) = eVis;

/* printf ("gOverlapBeginO[dJ = d\t goverlapEud[XdJ %d\n", rts,
gOverlapBegin~rts), rts, gaverlapEnd~rts)); */

/* printf ("apt = %d, rts= Yd, Bvis= %~d, Evis = %d, ReqLen = d
TAT = VYd\n", apt, gRTS~sptJ EglumWin~apt)), g~eginVis (apt) (gum~in~apt)),
gEudVis (apt)EgluiaWin (apt)), gReqLength (apt), gTurnAroundTime (apt) ;*

/* printf("---- glum~inMEd = %d\n", spt,gluaWin~spt)); *

f close Cfp);
/* for (i1l; i<= rnm-.supports;i++)

printf("gluaWin[%dJ = %d\n" ,it,glumiin~iJ); *

else
fatal-error ("Cannot read input city file overlap");

62

Appendiz C. Schedule Builder

This program code is a modification of the Evaluation Function code in Appendix B.

Schedule Builder generates a schedule corresponding to an input solution sequence. This

solution is stored in a file named tourdata and is produced by the GENITOR code at the

end of a run.

The output of the Schedule Builder code is an overlap file and a schedule file. The

overlap file contains the start and end times of all supports which overlap into the next

day or within the maximum turn around time of the end of the day. The schedule file

contains the schedule produced for the 24-hour period. Included in this fie is the support

number, RTS, beginning time, ending time, service time, and turnaround time.

/* Schedule Builder Code - build schedule */
/* 1 Feb: print schedule to file */
/* 30 Jan 94: fix overlap by clearing the global overlaps */
/* 28 Jan 94: overlap of 20 minutes allowed at beginning */
/* 3 Jan 94: allowed supports to be scheduled past 1470 */
/* changed filledO array from 1470 to 2100, take off condition */
#include <stdio .h>
#include <math.h>
#include <gene.h>
#include <op.edge.recomb.h>
*include <ga-global-extern.h>

int
ScheduleWindow (spt, win, filled)
int apt;
int win;
int filled[21] [2100);{

/* Declare Variables */
int

bVis, /* gBeginV- gTurnAroundTime : 0 if latter <0 */
eVis, /* ending visibility 28 Jan */
rLength, /* RegLength + TurnkroundTime */

endSpt, /* Flag for Support either scheduled or run out */
j. /* Counter for support index being scheduled */
1, /* Counter for filling in scheduled blocks */

/* spt: Index for support */
minute, /* current time interval */
length, /* length so far */
scheduled, /* binary: 1 or scheduled; 0 for not schedule */
beginSched,
endSched,
start, /* current start of support */

tat, /* turn around time */
rts; /* RTS number -- passed from global gRTS[support] */

/* scheduledPtr : indicates if scheduled or not */
FILE *fp;

/**** Initialize Variables *****/
scheduled = 0;
length = 0;

63

endSpt =0; /* initialize flag; end when it = 1*,/
/* Open file for output to schedule 1 Feb */

fp = fopen(schedule . a);

/e Initialize Starting Point, Required Length with TAT */

rts = gRTS[spt] [win];
tat = gTurnkroundTime[apt];
bVis = gBeginVia[spt] [win] - gTurnkroundTino[apt] + 20;
eVis - glndVis[sptJ [win] + 20; /* 20 is max TAT - 28 Jan */

I, if ((spt==1) II (spt==155))
printf(tat=%d,bVis=d\n ,tat,bVis); ./

if (bWis < 0){
tat = bVis + tat;

bVis = 0; /**** reduces tat if near boundary at start ****/
}

rLength = gReqLength[spt) + tat;
I* if C ((pt==1) II (spt==165))
printf(rLength=-d\n ,rLength); */

minute= bVis + 1; /* my blocks are filled to the right of position */
start = minute; /* Starting position of current attempt */
while (endSpt != 1) /* schedule until successful or end */
{

if (filled[rts] [minute) == 0) /* if current space free */
length += 1; /* increment length if space free */

else
I

length = 0; /* reset to zero if space is filled */
tat gTurniroundTime[spt];

rLength = gReqLongth[spt) + tat;
start = minute+1;}

if (length == rLength)
f

beginSched = minute - gReqLength[sptJ - 20;
endSched = minute - 20;

scheduled = 1;
for (1 = start;l <= minute;l++)

filled[rts][1] = 1;

/* If ends in TAT zone then save to overlap */
if (endSched > 1420) /* 1440 - max TAT; in overlap */

if ((gOverlaplnd[rteJ = 0) 1 I (sndSched >
gOverlapEnd[rtsJ))

{ /* if rts overlap is new or this one is longer than
last */

gOverlapEndErts] = endSched - 1420;
if (beginSched > 1420)

gOverlapBegin[irts] = beginSched - 1420;
else

gOverlapBegin[rts] = 0;

I

if ((minute= eVis) 11 (scheduled == 1))
endSpt = 1;

minute += 1;
} /* End Support */

/* 1printf (stdout, scheduled = V•d\n , scheduled); */

if(scheduled == 1)

printf(YVd Vd YA YA VA d\n,
spt, rts, beginSched, endSched , gReqLength[spt],

64

gTurnAroundTime[apt]);
fprintf(fp, %d %d %d %d %d dd\n

apt, rta, beginSched, endSched , gReqLength[apt],
gTurnAroundTime [apt]);

}
/*else

printf(Support %d not scheduled in window %d\n , apt, win); C/
fcloae(fp); /* atop printing to file 1 Feb */
return(acheduled);

}/* end Schedulegindow */

int
ScheduleSupport (apt ,filled)
int apt;
int filled[21] [2100);{
int i, win, flag;
int ached; /* flag = 1 if scheduled , 0 ow */
ached = 0;

win = 1; /* counter for number of windowa tried */
flag : 0;

while (flag != 1)
f

ached = Scheduleuindow(opt,win,filled);
/* printf (sched=%d, glumVin[%d]=%d\n , sched,opt,glumnin[apt]); 5/

if ((ached == 1) 11 (win == glumWin~spt]))
flag =1;

win +=I;}
/* if (sched==O)

printf(*** Support %d NOT SCHEDULED!***\n ,apt); */
return(sched);}

float
tsp-eval (order, num.supports)
int order [];
int num.supports;

/* Declare Variables */
int

filled[21] [2100), /* time units in schedule are filled[rt•] [time) */
j, /* Counter for support index being scheduled */
k,
apt, /* Index for support */
numScheduled, /* number of supports scheduled */
minute, /* counter for current time */

rtslum; /* max number of RTSa */
/**** Initialize Variables *****/

rtslum = 20; /* must be one less than max cause of arrays 0-19 */

/* printf(rtslum = %d\n , rtslum); */
for (k = 1;k <= rtslum;k++)

for (minute = O;minute <= 2100;minute++)

filled[k] [minute] = 0;
/* printf(filled[Yd[JdJ= Yd\n ,k,minute,filled[k][minuteJ); s/}

}

/* Schedule the overlaps first, before the real supports */

65

for (k = 1; k <= rtalua; k++)
for (minute = gOverlapBegin~kJ; minute <= gOverlapEnd~k]; mninute++)

filledDk)(uinute) 1;
/* Set the Overlaps back to zero; since written to in scheduling 30 Jan 4

for (k = 1; k <= rtslum; k++)
I

gOverlapflegia~kJ = 0;
gOverlapEnd~k] = 0;

numScheduled =0;

/* Schedule each Support in Priority Order *
printf (Spt RTS Beg End Length TAT\n\n);

for Qj = 1;J<= nuzu..supports; J++) /* start at 0 for Top, 1 for sb *

apt = order~jJ;
/* printf(Start SS Order[%dJ = YAd\n ,j, orderjJI); *

numScheduled += ScheduleSupport(spt, filled);
} * end nu...supports */

/* fprintf Cstdout, num..supports = Xd\n ,num-.supports); *
/* The GA wants to MIlimize something so do Kax pose - actual *

printf(\n Number Scheduled=
numScheduled);

raturn~num..supports - nuaScheduled);
} * End Eval *

FUNCTION: read-.data

*DESCRIBE: read in data
*INPUT PARAMETERS: filename of list of satellite support data

*RETURN VALUE: none

*CALLS: get..coord..array
*read coords
*get...2D-.dist-.array
*calc-distances

void
read-.data (coord..file, num-supports)
char coord-file[0;
imt num..supports;

int i;
mnt spt;
mnt rts;
mnt bVis, eVis, rLongth,tat;
FILE *fp;

for (i=i; i<=num~supports; i++)

gNumWin (i) 0; /* set number of windows [spt] 0 *
/* printf C gNum Win [W%dJd\n i,iglum WinEil); *

if (fp = fopen(coord..file, r

while Cfscanf~fp, %d Yd %~d Yd %d %~d &akpt, krts, Mbis, keVis,krLength, ftat)!=EOF)

gNuwinvmnpt) +i1;
gRTS~spt][gNumWin~sptJ) rts;
gBeginVis [opt) EgNumuin~spt)) = bVis;

66

gEndVis~spt3lglumiin[sptJJ = eVia;

gleqLength [apt] = rLength;
gTurnAroundT ins apt) = tat;

/* printf (apt = Ud. rts= %d, Bvia= %d, Evia = %d, ReqLen = %d,
TAT = Xd\n , ap, gRTS [apt) [giunWin [apt]], gleginVis (apt] [gluWin [sptJ J,
glndVia [apt) [glim~in (pt)), gReqLength [apt], gTurukroundTime [apt) ;*

I
f close (fp);
/* for (i1l; i<= nu...aupports;i++)
Srintf(glua~in[Whd = Xd\n ,i,glumWin~iJ); *

else
fatal-error (Cannot read input city file)

FUNCTION: read-overlap-data

*DESCRIBE: read in data
*INPUT PARAMETERS: filenaime of list of satellite support overlap data

*RETURN VALUE: none
*CALLS: get-.coord-array

4' read-.coords
*get-.2D-.dist-.array
*calc-.distances

vod
read-overlap-.data (coor&..file)
char coord-.fileO];

mnt i;
mnt rts;
mnt bVis, eVis;
FILE *fp;

if (fp = fopen(coord-.file, r

while Cfscanf~fp, Yd %d Yd , rts, kbVis, keVis)!=EOF)

gOverlapBegin[rts] bVis;
gaverlapEnd~rts) = eVis;

/4' printf C gaverlapBegin[VdJ =dWt goverlapEnd[XdJ = dn
rts, gaverlapBegin[rtsJ, rts, gaverlapEnd~rta)); */

/4' printf C apt = %d, rts= %d, Bvis= %d, Evis = Yd, ReqLen U.VA
TAT = VYd\n , apt, gRTS [apt) g~uu~i[spt)], gBeginVis [apt)](glumin [apt)),
gEndVis [apt) [gNumwin [apt)], gReqLength [apt), gTurnAroundTime [apt] ;*

/* printf(C------gNunuin [VA] = Wdn , pt, gNuzvin [apt));

f close Cfp);
/4' for (i~1; i<= num..supports;i++)

printf C gNuu~in[%d] = VWdn ,i,gNumliin~iJ); *

else
fatal-.error (Cannot read input city file)

FUNCTION: print-overlap-.data

*DESCRIBE: print out data

67

*INPUT PARANETERS: filename of list at satellite support overlap data

REUTURN VALUE: none

void
print-overlap-.data (coord...ile)
char coord-.fileO];

mnt i;
int. rtm;
int bVis, *Via;
FILE *fp;

if (Up = fopen(coord-.f ii., w

for (rts = 1; rts <= 19; rts++)

byis = gOverlaplegin~rts];
eVis = gaverlapEnd~rts);
fprintf(fp, %d\tY~d\t~d\n , rtu, b~is, eVis)

I
fclose (fp);

else
fatal~error (Cannot read or write overlap file)

68

Appendix D. Satellite Range Scheduling Data Processing

The processing of satellite support data begins with raw ASTRO data which is pro-

cessed by Pascal programs to produce satellite request windows. This data is filtered by a

C program to prepare the data for the genetic algorithm.

ASTRO Data

ASTRO (Automated Scheduling Tools for Range Operations) is a computer system

and database to aid the range schedulers. The report information for the seven days of

test data is in a file named FINLDATA.DFT. This file is the raw input which determines

support requests and request visibilities.

Requests and Visibility Windows

Pascal programs written by Gooley and Schalck are used to process the ASTRO

data. The programs extract the satellite support requirements and request visibilities.

Five programs are used for this algorithm: one to process the low-altitude satellite (low-

flyer) support information, and four to process the medium and high-altitude satellite

support (high-flyer) information. These programs are run using TurboPascal on a IBM

PC compatible computer.

The final data format is:

1. Support Number

2. RTS the satellite is visible to

3. Beginning visibility time of window (in minutes)

4. Ending visibility time of window

5. Length of support (in minutes)

6. TAT (turn around time) required by an RTS

7. IRON/Revolution: identifies satellite and pass

69

LREQ.PAS. This Pascal program reads in the information on low-flyer supports

and saves the information to a file called REQLF.DAT containing the low altitude satellite

support requests for a day.

HREQ.PAS. This program reads in the information on high-altitude requests for

a day and saves the information to two files: 1) R.EQHF.DAT: the high-altitude requests

for a day, and 2) DIV.DAT: the visibilities for the high altitude requests for a day.

TOL.PAS. This program takes tolerance data presented in different formats for

each request from HXEQ.PAS Fc 'd standardizes the tolerance window data.

CROSS2.PAS. This program cross checks requests and visibilities. It cross refer-

ences the visibility file created in HREQ.PAS and the output from TOL.PAS to determine

all the MTSs that can satisfy each medium or high altitude support request from TOL.PAS.

RTS.PAS. This Pascal program ensures all R.TS sides are included once and only

once for each support request-RTS visibility combination.

Prepare Time Window Data for GENITOR

This program reads in the separate data files for the low-flyers and high-flyers and

combines them into one file for use in the GENITOR genatic algorithm. It also changes

the RTS name to a number for reference in array structures.

/* 5 Jan 94 Preprocess Data modications */
/* now strips out all windows for RTS # 9, 16, 19 to match Spike */

-- reads in request windows of LF/HF and prints out concate file */
with RTS names changed to numbers

/* 1) Open output file "Dayout.dat" */
/* 2) Ask for LF file name (ex. "LFDaylg.dat") */
/* 3) Read in data, convert name to number and drop IROI */
/* 4) Ask for HF file name, read in data -- start spt # at LF +1 */

Program: Process.
,
* DESCRIBE: read in data
* INPUT PARAMETERS: filename of list of satellite support data for LF and HF

* RETURI VALUE: none, but print a support list to Dayout.dat
,

* CALLS: read-data

70

*include <stdio.h>

mt
equal-strings (s1, s2)
char sl[,s20;{
int i = 0, answer;

while (s1(i] == s2[i] U& st~ii 9: '\0' && s2[i] :: '\0) ++i;
it (s5[i] == ,\o, && s2[i] == ,\0o)
answer = 1; /* strings equal */
else
answer = 0; /* not equal */
return (answer);
}
int
name_.toum (name)
char name [];{
int rts;
iL (equal-strings (name,"POGO-A"))
rts = 1;
else if (equal-strings (name,"POGO-B"))
rts = 2;
else if (equal-strings (name,"POGO-C"))
rts = 3;
else if (equal-strings (name,"HULA-A"))
rts = 4;
else if (equal-strings (name,"HULA-B"))
rts = 5;
else if (equal-strings (name,"COOI-A"))
rts = 6;
else if (equal-strings (name,"COOK-B"))
rts = 7;
else if (equal-strings (name,"INDI-A"))
rts = 8;
else if (equal-strings (name,"ID7-B"))
rts = 0;
else if (equal-strings (name,"BOSS-A"))
rts = 10;
else if (equal-strings (name,"BOSS-B"))
rts = 11;
else if (equal-strings (name,"LIOI-A"))
rts = 12;
else if (equal-strings (name,"LION-B"))
rts = 13;
else if (equal-strings (name,"GUAN-A"))
rts = 14;
else if (equal-strings (name,"GUAN-B"))
rts = 15;
else if (equal-strings (name,"PIKE-A"))
rts = 16;
else if (equal-strings (name,"PIKE-B"))
rts = 0;
else if (equal-strings (name,"REEF-A"))
rts = 28;
else if (equal-strings (name,"REEF-B"))
rts = 0;
else
printf ("UUMKO N\n");
return(rts);}

read data (out-file, coordfile, start, endPtr)
FILE *out-file;

71

char coord-.fileo[;
mnt start;
iut *eudPtr;

mnt i;
mnt apt;
char rtolame [BJ;
mnt bVia, eVi., rLength~tat;
char iron[16J;
int totluaSpt;
mnt rts;
FILE *input-.f ile;

inupt-.f ile = fopen(coord-tile, "r");
while Ciacant(iuput-.fius, "%d %a YA %d %d %d %a", &apt, krtslame. AbVis,

keVis,krLength, ktat, &iron) !=EOF)

opt apt + start;
totlumspt = apt;

rts = nam...to-Num(rtslmme);
if (rts != 0)

fprintf (out...file,"%d\t%d\t~d\t%d\t~d\t~d\n"I apt, rta, bVis, aVis,
rLength, tat);

I
fda..e (input-..file);
*endPtr = totlumSpt;

/***** MAIN PROGRAM ***

main()
{ * start MAIN e

/***I' Initialize and declare Variables *C*

char lfdata[l2J, hfdata[12);
int NuuLFSpt, NuBKFSpt;
FILE *output-.file;

output-.file = topenC"datafile', ge's");

/**** Input LF Filename *****/
printf("What is the LF filename?");
scanf ("W's, lfdata);

/**** Read in LF Data and print to Dayout.dat **/

read-.data (output-.file, lfdata, 0, &IumLFSpt);

/**** Input EF filename *****/
print~f("What is the HF filename?");
scant ("Xe", hfdata);
/**** Read in HF Data and print to Dayout.dat ***
read-data (output-.file, hfdata,NuaLFSpt, kNumHFSpt);

f close (output-..file);
printfC(NuzLFSpt = %d, End FSpt = Xd\n", NuisLFSpt, NuzulFSpt);
} * end Main III

72

Appendix E. Schedules for Week One Data
Schedules produced for each of seven days of data follow. The scheduled supports are

sorted by R.TS, and by time. The columns are: Support number, RTS, Beginning Time,
Ending Time, Support Length, and Support turn around time.

73

Day 1 142 POGO-C 1336 1361 16 20
If14 A 0 36 36 1t

PO0o-A 26 42 16 20 1 1 -A 60 70 20 6
1 Poo7-A 65 80 151 169 HULA-A 90 106 i 15

0000-A 9 105 105 t 12 HUL-A 139 163 1 20
10 POGO-A 138 162 14 20 176 uI-A 168 188 20 16
180 POGO-A 80 185 6 16 184 HuLA-A 210 225 16 1514 ~185 mnLA-A 240 245 5 152? ,mo-, 214 248 14J is -AI

PO0-A 2 279 1140 32H ,-, 33- 351 16 20
193 P0GO-A 294 324 10 15 198"HULA-A 366 391 2501
31PGO- 331 34 1 20 40 HULA-A 413 430 17 20
39 P0o0-A 367 379 12 20 60so :A-A,6 6 527 12 20
204 POG0-A 395 410 16 16 66 HUAA 6 1 661 10 0
206 POGO-A 426 436 10 16 226 HULAA 590 600 10 16
47 P000-A 466 480 14 20 226 HU A 616 620 6 16
51 POGO-A 527 43 16 20 230 HULA-A 660 676 15 15
57 POGO-A 567 583 16 20 74 h -A 736 752 16 20
228 POGO-A 605 615 10 16 244 HULA-A 767 772 5 15
65 POGO-A 638 651 13 20 80 HULA-A 807 820 13 20
235 POGO-A 690 700 10 16 249 HULA-A 835 860 15 15
240P Poo-A 726 736 10 16 255 HULA-A 866 880 15 15

6 Po0o-A 756 772 16 20 89 HULA-A 904 917 13 20
248 P000-A 800 835 35 15 264 HULA-A 932 947 15 15
269 Po0O-A 870 890 20 16 98 HULA-A 970 981 11 2094 P000-, 939 960 11 20 270 HULA-A 996 1016 20 16
99 POGO-A 971 987 16 20 277 HULA-A 1036 1040 6 16
276 POGO-A 1020 1036 12 112 HULA-A 1079 1095 16 20
109 POGO-A 1062 1074 12 20 288 HULA-A 1110 1120 10 16
280 POGO-A 1089 1099 1 26 296 HULA-A 1166 1160 6 16
116 POGO-A 1123 1136 13 20 298 HULA-A 1190 1206 16 15
124 POGO-A 1171 1188 17 20 304 HULA-A 1260 1286 25 16
127 POGO-A 1221 1235 14 20 312 HULA-A 1325 1335 10 15
134 POGO-A 1260 1274 14 20 316 :HULA- 1355 1368 13 15
139 POGO-A 1318 1333 14 20 160M HUL-B 30 75 45 16
146 POGO-A 1319 1373 16 20 24 HULA-B 238 254 16 20
322 POGO-A 1416 1450 35 16 33 HULA-B 336 351 16 20
138 POGO-B 15 1450 16 199 HULA-B 366 371 6 15
1 POGO-B 5164 1 120 212 HULA-B 510 630 20 16

42 POGO-B 051 6 20 216 16 1HULA-B 560 575 15 15
16 POGO-B 169 172 15 20 37 HULA-B 736 752 16 20
12 POGO-B 692 179 10 20 239 HULA-B 767 772 6 16
21 POGO-B 230 248 16 20 81 HULA-B 807 820 13 20
203 POGO-B 360 360 10 15 24 HULA-B 855 900 45 15
42 POGO-B 756 439 15 20 97 HULA-B 970 981 11 20
42 POGO-B 426 844 14 20 102 HULA-B 1020 1036 16 20

250 P0GO-B 463 527 16 20 272 HULA-B 1051 1056 6 15
62 POGO-B 625 639 14 20 113 HULA-B 1079 1095 16 20

267 123B 7 9015 HULA-B 11 69 1183 1 20
67 POGO-B 660 674 14 20 128 HOULA-B 1262 1234 12 20
236 POGO-B 690 725 35 15 138 HULA-B 1257 1268 11 20
77 POGO-B 757 771 14 20 3 09 HULA-B 1290 1305 15 15
83 POGO-B 834 848 14 20 30 HOOK-B 1 46 12012
252 POGO-B 863 878 1 15 310 HULA-B 1320 14856 165 15
263 POGO-B 915 960 45 15 156 COOK-A 0 5 5 15
267 POGO-B 975 990 15 15 5 COOK-A 64 67 13 20
274 POGO-B 1010 1020 10 154 COOK-A 145 160 15 15
107 POGO-B 1047 1061 14 20 188 COOK-A 240 285 15 16
284 POGO-B 1080 1095 15 15 194 COOK-A 300 345 45 15
289 POGO-B 1110 1125 15 16 44 COOK-A 441 452 11 20
119 POGO-B 1145 1158 13 20 216 COOK-A 526 535 10 15
296 POGO-B 1173 1183 10 15 219 COOK-A 550 675 26 15
293 POGO-B 1198 1208 10 15 231 COOK-A 660 705 45 15
131 POGO-B 1247 1262 16 20 242 COOK-A 735 765 30 15
308 POGO- B 1290 1330 40 15 260 COOK-A 825 840 15 15
146 POG0-B 1362 1375 13 20 88 COOK-A 874 890 16 20
168 POGO-C 70 106 35 16 261 COOK-A 9065 920 16 16
13 POGO-C 1560 163 13 20 100 COOK-A 976 989 14 20
182 POGO-C 206 220 15 15 282 COOK-A 1080 1095 15 15
26 POGO-C 249 264 16 20 283 COOK-A 1110 1130 20 15
30 P0GO-C 326 342 16 20 294 COOK-A 1145 1160 15 15
37 POGO-C 364 376 12 20 126 COOK-A 1192 1206 14 20
46 POGO-C 449 466 17 20 138 COOK-A 1293 1308 16 20
211 POGO-C 505 515 10 15 316 COOK-A 1365 1370 5 15
54 POGO-C 551 567 16 20 161 COOK-A 1426 1441 15 20
224 P000-C 582 622 40 15 6 COOK-B 54 68 14 20
66 POGO-C 653 669 16 20 35 COOK-B 349 364 15 20
232 POGO-C 684 699 15 15 214 COOK-B 515 652 10 15
75 P000-C 739 753 14 20 241 COOK-B 730 925 195 15
86 P000-C 864 868 14 20 297 COOK-B 1185 1192 7 15
262 P000-C 910 955 45 15 136 COOK-B 1274 1290 16 20
266 P000-C 970 980 10 15 311 COOK-B 1320 1330 10 15
103 P000-C 1024 1036 12 20 152 COOK-B 1428 1443 15 20
I1I P000-C 1071 1087 16 20 1 INDI-A 13 28 15 20
290 P000-C 1115 1130 15 15 164 IIDI-A 54 64 10 15
121 POGO-C 1161 1174 13 20 171 INDI-A 90 110 20 15
299 POGO-C 1200 1245 45 15 17 IDI-A 179 195 16 20
305 POGO-C 1266 1290 25 16 183 IIDI-A 210 260 40 15

74

192 INDI-A 290 300 10 15 213 LION-A 515 535 20 15
197 INN-A 330 3315 68 LI01-A 665 678 13 20
202 I -A 36 0375151233 LION-A 693 713 20 15
96 0: 41 20 16 84 LION-A 845 857 12 20
~08 A 515 90 15 256 LION-A 872 907 35 15

SINI-: 645 15 95 LION-A 940 955 15 20
I0 15 269 LION-A 990 1010 20 15

223 I :El-A 585 600 15 15 106 LION-A 1039 1052 13 20
237 IIDI-A 701 11 10 15 117 LION-A 1129 1138 9 20
234 INN-A 726 736 10 15 132 LION-A 1252 1267 15 20
245 -A 780 785 5 15 314 LION-A 1355 1390 35 15
246 lIDI-A 800 810 10 15 20 LION-B 225 239 14 20
251 IND-A 830 850 20 15 28 LION-B 271 284 13 20
257 IEDI- 870 890 20 15 195 LION-B 320 330 10 15
260 IEDI-A 905 910 5 15 210 LION-B 490 510 20 15
265 IEDI-A 935 955 20 15 229 LION-B 660 670 10 15
268 INI-A 990 995 5 15 87 LION-B 867 88? 15 20
104 IEDI-A 1025 1039 14 20 91 LIUN-B 933 94 14 20
279 IDI-A 1054 1059 5 15 101 LION-B 1010 1025 15 20
281 IDI-A 1080 1100 20 15 108 LION-B 1052 1063 11 20
292 IDI-A 1130 1140 10 15 120 LION-B 1150 1166 16 20
291 IDI-A 1155 1160 5 15 302 LION-B 1245 1270 25 15
300 IDI-A 1210 1220 10 15 8 GUAM-A 108 123 15 20
303 IEDI-A 1260 1280 20 15 178 GUAM-A 170 190 20 15
141 IDI-A 1333 1349 16 20 179 GUAM-A 205 230 25 15
150 IEDI-A 1389 1401 12 20 189 GUAM-A 265 285 20 15
320 IEDI-A 1416 1436 20 15 36 GUAM-A 355 369 14 20
319 IEDI-A 1451 1461 10 15 207 GUAM-A 420 435 15 15
159 BOSS-A 10 20 10 15 52 GUAM-A 535 550 15 20
165 BOSS-A 60 360 300 15 64 GUAM-A 636 651 15 20
191 BOSS-A 375 395 20 15 93 GUAM-A 935 951 16 20
41 BOSS-A 421 434 13 20 105 GUAM-A 1039 1050 11 20
48 BOSS-A 475 487 12 20 114 GUAM-A 1098 1112 14 20
215 BOSS-A 525 530 5 15 122 GUAM-A 1168 1181 13 20
58 BOSS-A 571 586 15 20 137 GUAM-A 1283 1299 16 20
227 BOSS-A 601 606 5 15 313 GUAM-A 1350 1370 20 15
222 BOSS-A 621 641 20 15 16 GUAM-B 173 187 14 20
71 BOSS-A 670 686 16 20 190 GUAM-B 265 745 480 15
78 BOSS-A 769 783 14 20 285 GUAM-B 1105 1205 100 15
247 BOSS-A 800 810 10 15 147 GUAM-B 1366 1380 14 20
258 BOSS-A 870 880 10 15 11 PIKE-A 138 154 16 20
253 BOSS-A 895 900 5 15 23 PIKE-A 238 253 15 20
96 BOSS-A 970 983 13 20 201 PIKE-A 358 415 57 15
275 BOSS-A 1020 1040 20 15 43 PIKE-A 440 454 14 20
278 BOSS-A 1055 1065 10 15 53 PIKE-A 539 556 17 20
115 BOSS-A 1099 1114 15 20 60 PIKE-A 614 629 15 20
118 BOSS-A 1138 1149 11 20 125 PIKE-A 1172 1188 16 20
287 BOSS-A 1164 1174 10 15 7 REEF-A 81 93 12 20
301 BOSS-A 1215 1220 5 15 18 REEF-A 193 207 14 20
135 BOSS-A 1264 1280 16 20 181 REEF-A 222 242 20 15
306 BOSS-A 1295 1305 10 15 49 REEF-A 480 496 16 20
140 BOSS-A 1327 1340 13 20 59 REEF-A 582 596 14 20
148 BOSS-A 1369 1383 14 20 63 REEF-A 632 644 12 20
321 BOSS-A 1415 1435 20 15 72 REEF-A 728 742 14 20
157 BOSS-B 0 5 5 15 82 REEF-A 831 847 16 20
3 BOSS-B 39 55 16 20 92 REEF-A 933 946 13 20
162 BOSS-B'70 85 15 15 129 REEF-A 1231 1248 17 20
9 BOSS-B 117 133 16 20 318 REEF-A 1390 1445 55 15
14 BOSS-B 163 175 12 20
176 BOSS-B 190 200 10 15
187 BOSS-B 235 280 45 15
34 BOSS-B 340 355 15 20
220 BOSS-B 560 570 10 15
61 BOSS-B 619 635 16 20
69 BOSS-B 668 683 15 20 Day 2
79 BOSS-B 771 786 15 20
243 BOSS-B 801 821 20 15 145 POGO-A 45 90 45 15
85 BOSS-B 848 863 15 20 152 POG0-A 105 120 15 15
273 BOSS-B 1005 1050 45 15 157 POGO-A 150 170 20 15
110 BaSS-B 1070 1086 16 20 162 POGO-A 200 215 15 15
286 BOSS-B 1105 1150 45 15 166 POGO-A 230 280 50 15
130 BOSS-B 1232 1247 15 20 173 POGO-A 295 305 10 15
307 BOSS-B 1290 1305 15 15 180 POGO-A 345 390 45 15
144 BOSS-B 1352 1364 12 20 31 POGO-A 419 435 16 20
317 BOSS-B 1380 1400 20 15 36 POGO-A 460 475 15 20
153 BOSS-B 1428 1442 14 20 41 POGO-A 512 529 17 20
155 LION-A 0 15 15 15 45 POGO-A 554 570 16 20
166 LION-A 60 85 25 15 52 POGO-A 607 619 12 20
173 LION-A 111 1?6 15 15 211 POGO-A 645 660 15 15
177 LION-k 165 i 0 5 15 61 POGO-A 690 705 15 20
25 LION-A 244 257 13 20 222 POGO-A 720 735 15 15
186 LION-A 272 287 15 15 227 POGO-A 750 780 30 15
29 LION-A 325 336 11 20 73 POGO-A 808 823 15 20
38 LION-A 365 381 16 20 78 POGO-A 858 868 10 20
206 LION-A 420 435 15 15 85 POGO-A 907 923 16 20
46 LION-A 466 482 16 20 251 POGO-A 960 975 15 15

75

94 POGO-A 1016 1027 12 20 248 HUL-A 945 950 5 15
262 P8GO-A 1066 1076 10 15 249 HULA-A 965 975 10 15
26 PGO-A 1090 1105 15 15 254 HULA-A 990 1010 20 15
103 PQGO-A 1132 1147 15 20 97 HULA-A 1050 1067 17 20
272 P0GO-A 1180 1190 10 15 100 HULA-A 1101 1116 15 20
113 POGo-A 1232 1246 14 20 269 HULA:A 1155 1185 30 15
280 POGO-A 1265 1280 15 275 ULA•-A 1200 1215 15 15
124 POO-A 1331 134125 20 278 HULA-A 1230 1235 5 15
298 POGO-A 1380 13915 15 288 HULA-A 1305 1315 10 15
137 POGO-A 1431 1447 16 20 290 HL-A 1350 1365 15 15138 POGO-B 0 10 10 16 299 HU-A 1390 1405 15 15

142 POGO-B 25 40 15 15 302 HULA-A 1420 1455 35 15
149 POGO-B 65 100 35 15 143 HULA-B 60 6565 15
155 POGO-B 135 150 15 15 158 HULA-B 160 16565 15
160 POGO-B 180 195 15 15 21 HULA-B 307 322 15 20
170 POGO-B 250 25565 15 29 H.ULA-B 408 423 15 20
169 POGO-B 270 285 15 15 37 HULA-B 482 497 15 20
177 POGO-B 300 345 45 15 209 HULA-B 595 605 10 15
181 POGO-B 360 375 15 15 223 HULA-B 730 920 190 15
186 Po0o-B 395 410 15 15 245 HULA-B 935 950 15 15
35 POGO-B 453 467 14 20 91 -B 1005 1022 17 20
196 POGO-B 482 497 15 15 267 HUA-B 10 1125 15 15
197 POGO-B 512 522 10 15 270 H.ULA-B 1160 1170 10 15
204 POGO-B 550 565 15 15 273 HULA-B 1185 1260 75 15
53 POGO-B 623 639 16 20 285 HULA-B 1285 1296 10 15
65 POGO-B 707 721 14 20 292 HULA-B 1350 1363 13 15
221 POGO-B 736 746 10 15 140 COOK-A 16 31 15 15
71 POGO-B 787 801 14 20 16 COOK-A 239 254 15 20
74 POGO-B 827 843 16 20 19 COOK-A 282 297 15 20
82 POGO-B 884 898 14 20 24 COOK-A 334 351 17 20
86 POGO-B 929 945 16 20 187 COOK-A 405 420 15 15
252 POGO-B 960 985 25 15 194 COOK-A 470 495 25 15
95 POGO-B 1034 1046 12 20 220 COOK-A 720 735 15 15
104 POGO-B 1133 1145 12 20 228 COOK-A 770 780 10 15
271 POGO-B 1160 1205 45 15 230 COOK-A 795 830 35 15
114 POGO-B 1233 1247 14 20 236 COOK-A 845 860 15 15
120 POGO-B 1304 1320 16 20 240 COOK-A 880 890 10 15
129 POGO-B 1362 1378 16 20 88 COOK-A 946 962 16 20
133 POGO-B 1404 1420 16 20 258 COOK-A 1020 1210 190 15
139 POGO-C 0 10 10 15 115 COOK-A 1244 1260 16 20
164 POGO-C 210 240 30 15 286 COOK-A 1290 1330 40 15
175 POGO-C 290 300 10 15 130 COOK-A 1364 1375 11 20
182 POGO-C 345 355 10 15 14 COOK-B 209 226 17 20
184 POGO-C 375 390 15 15 185 COOK-B 390 410 20 15
189 POGO-C 410 456 45 15 193 COOK-B 455 490 35 15
188 POGO-C 470 480 10 15 219 COOK-B 690 725 35 15
203 POGO-C 545 570 25 15 246 COOK-B 915 960 45 15
207 POGO-C 585 625 40 15 253 COOK-B 980 1125 145 15
57 POGO-C 656 672 16 20 277 COOK-B 1210 1290 80 15
217 POGO-C 687 697 10 15 279 COOK-B 1305 1310 5 15
69 POGO-C 758 769 11 20 126 COOK-B 1346 1359 13 20
235 POGO-C 840 845 5 15 141 I11)-A 5 10 5 15
237 POGO-C 860 875 15 15 147 11)-A 45 119 74 15
243 POGO-C 905 945 40 15 156 INDI-A 140 145 5 15
257 POGO-C 1005 1015 10 15 159 INDI-A 165 190 25 15
98 POGO-C 1068 1075 17 20 163 1I1)I-A 205 225 20 15
102 POG-C 1131 1143 12 20 168 INDI-A 240 245 5 15
268 POGO-C 1158 1168 10 15 171 1NDI-A 265 285 20 15
110 POGO-C 1205 1221 16 20 178 1)DI-A 320 330 10 15
117 POGO-C 1260 1276 16 20 176 I1DI-A 345 355 10 15
123 POGO-C 1323 1336 13 20 179 1NDI-A 370 390 20 15
293 POGO-C 1351 1366 15 15 190 I1)DI-A 430 435 5 15
134 POGO-C 1420 1435 15 20 192 I1I1)-A 450 470 20 15
4 HULA-A 40 54 14 20 43 INDI-A 550 566 16 20
144 HfULA-A 69 89 20 15 210 INDI-A 600 605 5 15
154 HULA-A 120 135 15 15 213 IND1-A 655 665 10 15
151 HULA-A 150 160 10 15 60 I1DI-A 687 700 13 20
161 HULA-A 180 190 10 15 218 INDI-A 715 735 20 15
15 HULA-A 225 241 16 20 231 1NDI-A 800 810 10 15
167 HULA-A 256 276 20 15 234 IND1-A 835 840 5 15
23 HfULA-A 331 347 16 20 239 I11D1-A 870 890 20 15
27 HULA-A 383 398 15 20 241 I1)I-A 905 915 10 15
183 HULA-A 413 418 5 15 247 I1)I-A 935 955 20 15
191 HULA-A 435 450 15 15 93 11)-A 1007 1019 12 20
195 HULA-A 480 490 10 15 261 11-A 1050 106655 5 15
199 HULA-A 510 530 20 15 259 1•1-A 1070 1075 5 15
202 HULA-A 545 550 5 15 266 111)-A 1105 1200 95 15
46 HUA-A 570 583 13 20 119 I11)-A 1302 1319 17 20
215 HULA-A 660 670 10 15 283 I11)-A 1334 1344 10 15
64 H.ULA-A 706 722 16 20 295 111)-A 1375 1380 5 15
224 HULA-A 750 755 5 15 132 11)I-A 1402 1413 11 20
229 HULA-A 775 780 5 15 301 1M1-A 1428 1448 20 15
226 HULA-A 795 800 5 15 5 BOSS-A 46 61 15 20
232 HULA A 815 820 5 15 6 BOSS-A 87 100 13 20
238 HULA-A 865 885 20 15 8 BOSS-A 141 158 17 20
84 HULA-A 907 920 13 20 12 BOSS-A 189 199 10 20

76

165 BOSS-A 226 230 5 15 50 PIKE-A 605 617 12 20
174 BOSS-A 270 290 20 15 56 PIKE-A 646 660 14 20
22 BUSS-A 310 324 14 20 63 PIKE-A 701 716 15 20
30 BOSS-A 410 426 16 20 77 PIKE-A 844 860 16 20
34 BOSS-A 452 466 14 20 105 PIlE-A 1142 1157 15 20
198 BO A 510 0 10 15 112 PIKE-A 1225 1240 15 20
205 BOSS-A 60 57 10 15 118 PIKE-A 1266 1276 10 20
49 BOSS-A 604 621 17 20 128 PIKE-A 1360 1376 15 20
55 BuSS-A 641 656 15 20 296 PIKE-A 1390 1410 20 15

B201 -OS-A 671 694 20 15 10 F-A 151 167 16 20
BOSS-A 706 71 10 15 33 REEF-A 451 465 14 20

68 BOSS-A 742 758 16 20 20o0REEF-A 515 535 20 15
225 BOSS-A 773 793 20 15 47 -A 591 602 11 20
242 BOSS-A 900 910 10 15 58 REE-A 661 676 15 20
87 BOSS-A 940 951 11 20 72 REEF-A 803 818 15 20
250 BOSS-A 966 981 15 15 79 REEF-A 859 872 13 20
96 BOSS-A 1040 1056 16 20 109 REEF-A 1201 1217 16 20
107 BOSS-A 1165 1177 12 20 122 REEF-A 1322 1334 12 20
274 BOSS-A 1195 1200 5 15
282 BOSS-A 1275 1290 15 15
297 BOSS-A 1380 1400 20 15
135 BOSS-A 1422 1438 16 20
148 BOSS-B 60 360 300 15
38 BOSS-B 505 518 13 20
48 BOSS-B 602 616 14 20
208 BOSS-B 631 636 5 15 Day 3
216 BOSS-B 675 680 5 15
244 BOSS-B 915 930 15 15
260 BOSS-B 1040 1050 10 15 166 POGO-A 1 1 0 0
263 BOSS-B 1070 1090 20 15 152 POGO-A 30 60 30 15
281 BOSS-B 1270 1295 25 15 8 POGO-A 92 108 16 20
289 BOSS-B 1320 1485 165 15 164 POGO-A 135 150 15 15
2 LION-A 11 24 13 20 19 POGO-A 197 213 16 20
153 LION-A 110 120 10 15 180 POGO-A 240 255 15 15
150 LION-A 135 155 20 15 25 POGO-A 288 304 16 20
13 LION-A 209 222 13 20 30 POGO-A 330 342 12 20
18 LION-A 257 271 14 20 195 POGO-A 360 375 15 15
25 LION-A 336 351 15 20 37 POGO-A 397 414 17 20
28 LION-A 404 414 10 20 42 POGO-A 440 454 14 20
32 LION-A 437 453 16 20 45 POGO-A 490 506 16 20
42 LION-A 540 551 11 20 215 POGO-A 540 555 15 15
54 LION-A 635 646 11 20 52 POGO-A 575 586 11 20
62 LION-A 693 706 13 20 64 POGO-A 676 689 13 20
67 LION-A 737 749 12 20 72 POGO-A 721 735 14 20
76 LION-A 837 852 15 20 234 POGO-A 750 770 20 15
81 LION-A 875 888 13 20 79 POGO-A 804 818 14 20
90 LION-A 971 985 14 20 238 POGO-A 833 838 5 15
255 LION-A 1000 1020 20 15 244 POGO-A 855 870 15 15
264 LION-A 1080 1100 20 15 89 POGO-A 899 915 16 20
101 LION-A 1122 1137 15 20 251 POGO-A 930 945 15 15
276 LION-A 1209 1219 10 15 257 POGO-A 970 1030 60 15
287 LION-A 1295 1305 10 15 266 POGO-A 1045 1060 15 15
131 LION-A 1369 1384 15 20 273 POGO-A 1080 1090 10 15
136 LION-A 1422 1433 11 20 111 POGO-A 1116 1128 12 20
300 LION-A 1448 1458 10 15 277 POGO-A 1143 1153 10 15
146 LION-B 45 480 435 15 117 POGO-A 1174 1190 16 20
201 LION-B 525 550 25 15 283 POGO-A 1205 1215 10 15
212 LION-B 655 670 15 15 289 POGO-A 1235 1250 15 15
66 LION-B 735 751 16 20 127 POGO-A 1273 1289 16 20
80 LION-B 868 880 12 20 133 POGO-A 1320 1335 15 20
89 LION-B 965 980 15 20 310 POGO-A 1405 1440 35 15
99 LION-B 1063 1075 12 20 2 POGO-B 7 21 14 20
111 LION-B 1223 1239 16 20 5 POGO-B 64 80 16 20
284 LION-B 1280 1290 10 15 159 POGO-B 95 110 15 15
121 LION-B 1314 1330 16 20 12 POGO-B 131 142 11 20
294 LION-B 1355 1445 90 15 14 POGO-B 165 180 15 20
9 GUAM-A 143 156 13 20 170 POGO-B 195 205 10 15
17 GUAM-A 243 259 16 20 26 POGO-B 297 313 16 20
26 GUAM-A 373 387 14 20 32 POGO-B 337 350 13 20
39 GUAM-A 507 521 14 20 36 POGO-B 389 405 16 20
51 GUAM-A 607 623 16 20 41 POGO-B 428 441 13 20
59 GUAM-A 669 684 15 20 201 POGO-B 456 466 10 15
70 GUAM-A 766 781 15 20 46 POGO-B 498 514 16 20
233 GUAM-A 830 850 20 15 51 POGO-B 541 557 16 20
83 GUAM-A 905 921 16 20 56 POGO-B 592 608 16 20
92 GUAM-A 1007 1021 14 20 62 POGO-B 643 659 16 20
108 GUAM-A 1200 1209 9 20 68 POG-B 695 710 15 20
116 GUAM-A 1254 1270 16 20 232 POGO-B 725 735 10 15
127 GUAM-A 1357 1370 13 20 75 POGO-B 776 791 15 20
291 GUAM-A 1385 1405 20 15 82 POGO-B 817 832 15 20
172 GUAM-B 265 745 480 15 246 POGO-B 860 880 20 15
256 GUAM-B 1000 1660 660 15 250 POGO-B 900 910 10 15
7 PIKE-A 110 126 16 20 254 POGO-B 930 945 15 15
11 PIKE-A 167 182 15 20 264 POGO-B 1000 1010 10 15
40 PIKE-A 509 525 16 20 104 POGO-B 1045 1062 17 20
44 PIKE-A 550 562 12 20 109 POGO-B .105 1117 12 20

77

113 POGO-B 1146 1162 16 20 261 COOK-A 990 1010 20 16
121 POGO-B 1218 1232 14 20 268 COQK-A 1051 1061 10 15
290 POGO-B 1247 1257 10 16 106 COOK-A 1089 1103 14 20
128 POGO-B 1289 1303 14 20 114 COOK-A 1152 1166 14 20
139 POGO-B 1360 1366 16 20 282 COOK-A 1190 1200 10 15
161 POGO-C 30 45 16 16 296 COOK-A 1267 1307 40 15
7 POGO-C 90 103 13 20 145 COOK-A 1395 1408 13 20
163 POGO-C 120 135 16 16 16 COOK-B 181 197 16 20
17 POGO-C 189 203 14 20 182 COOK-B 265 740 476 15
186 POGO-C 285 295 10 15 84 COOK-B 833 847 14 20
196 POGO-C 360 376 16 16 260 COOK-B 980 1170 190 16
199 POGO-C 390 406 15 15 294 COOK-B 1260 1286 25 16
205 POGO-C 420 435 16 16 132 COOK-B 1316 1329 14 20
47 POGO-C 501 517 16 20 142 COOK-B 1391 1404 13 20
216 POGO-C 640 566 15 15 154 11DI-A 30 36 6 15
67 POGO-C 599 616 16 20 156 111DI-A 62 62 10 15
69 POGO-C 710 721 11 20 160 INDI-A 80 90 10 16
78 POGO-C 797 813 16 20 169 I1rDI-A 175 180 5 15
248 POGO-C 900 945 46 15 176 INDI-A 200 220 20 15
268 POGO-C 975 990 16 15 183 INI-A 265 285 20 16
269 POGO-C 1060 1070 10 15 189 IID)-A 320 330 10 15
108 POGO-C 1101 1117 16 20 190 11)1-A 345 366 20 15
279 POGO-C 1155 1165 10 15 202 INDI-A 420 425 5 15
285 POGO-C 1225 1270 45 15 206 I1DI-A 460 470 20 16
131 POGO-C 1301 1314 13 20 49 I1IDI-A 520 535 15 20
138 POGO-C 1347 1360 13 20 219 IIDI-A 560 570 10 15
148 HULA-A 30 45 15 15 223 I1)DI-A 600 610 10 16
158 HULA-A 60 95 35 15 224 I1)DI-A 630 640 10 15
10 HULA-A 122 136 14 20 225 I1iDI-A 655 665 10 16
168 HULA-A 175 185 10 15 233 INDI-A 720 725 5 15
21 HULA-A 212 229 17 20 240 IIDI-A 800 815 15 15
181 HULA-A 260 265 5 15 242 I1DI-A 830 860 20 15
178 HULA-A 280 300 20 16 247 INDI-A 870 890 20 15
185 HULA-A 315 320 6 16 255 INDI-A 935 955 20 16
192 HULA-A 340 350 10 15 96 I1rDI-A 977 991 14 20
194 HULA-A 365 375 10 15 269 INDI-A 1006 1011 5 16
38 HULA-A 398 408 10 20 267 IiDI-A 1040 1050 10 16
43 HULA-A 451 467 16 20 270 INDI-A 1070 1086 15 15
210 HULA-A 495 570 75 15 276 INDI-A 1110 1135 25 15
217 HULA-A 685 590 5 15 284 I1)DI-A 1208 1218 10 15
65 HULA-A 676 691 15 20 125 INDI-A 1272 1288 16 20
231 HULA-A 710 720 10 15 301 1iDI-A 1320 1330 10 15
237 HULA-A 780 785 5 15 306 I1)DI-A 1370 1375 5 15
86 HULA-A 869 884 15 20 309 I1IDI-A 1395 1405 10 15
252 HULA-A 915 920 5 16 311 1IDI-A 1420 1440 20 15
249 HULA-A 936 940 5 15 149 BOSS-A 15 60 45 15
256 HULA-A 955 985 30 15 9 BOSS-A 100 116 15 20
101 HULA-A 1022 1038 16 20 13 BOSS-A 164 180 16 20
271 HULA-A 1071 1086 15 15 175 BOSS-A 195 210 15 15
112 HULA-A 1124 1137 13 20 24 BOSS-A 281 293 12 20
280 HULA-A 1170 1200 30 15 184 BOSS-A 308 328 20 15
287 HULA-A 1230 1240 10 15 35 BOSS-A 379 396 17 20
292 HULA-A 1260 1275 15 15 44 BOSS-A 483 497 14 20
288 HULA-A 1290 1295 6 15 60 BOSS-A 636 649 14 20
302 HULA-A 1325 1330 5 15 55 BOSS-A 582 594 12 20
303 HULA-A 1345 1359 14 15 60 BOSS-A 634 649 15 20
147 HULA-B 0 10 10 15 67 BOSS-A 679 693 14 20
163 HULA-B 30 50 20 16 70 BOSS-A 713 730 17 20
166 HULA-B 145 165 20 15 227 BOSS-A 745 766 10 15
174 HULA-B 195 210 15 15 236 BOSS-A 770 790 20 15
179 HULA-B 240 265 15 15 243 BOSS-A 860 885 35 15
188 HULA-B 300 345 45 15 93 BOSS-A 959 971 12 20
34 HULA-B 379 395 16 20 97 BOSS-A 995 995 0 20
212 HULA-B 510 630 20 16 265 BOSS-A 1020 1040 20 15
220 HULA-B 566 605 40 15 278 BOSS-A 1125 1130 5 15
230 HULA-B 705 750 45 15 119 BOSS-A 1196 1210 14 20
76 HULA-B 778 792 14 20 286 BOSS-A 1230 1240 10 15
96 HULA-B 991 1007 16 20 293 BOSS-A 1260 1265 5 15
102 HULA-B 1034 1048 14 20 129 BOSS-A 1293 1307 14 20
275 HULA-B 1105 1120 15 15 144 BOSS-A 1393 1409 16 20
281 HULA-B 1175 1184 9 15 307 BOSS-A 1424 1444 20 15
124 HULA-B 1245 1258 13 20 162 BOSS-B 115 190 75 15
298 HULA-B 1285 1325 40 15 171 BOSS-B 205 215 10 15
4 COOK-A 20 34 14 20 177 BOSS-B 230 280 60 15
167 COOK-A 175 220 45 15 193 BOSS-B 345 390 45 15
29 COOK-A 315 330 16 20 209 BOSS-B 490 505 15 15
197 COOK-A 375 390 15 15 218 BOSS-B 556 570 15 15
204 COOK-A 420 435 15 15 58 BOSS-B 613 627 14 20
211 COOK-A 495 505 10 15 221 BOSS-B 642 662 20 15
208 COOK-A 520 526 5 15 226 BOSS-B 685 720 35 15
214 COOK-A 540 566 25 15 246 BOSS-B 860 865 5 15
222 COOK-A 580 690 10 15 88 BOSS-B 885 900 15 20
229 COOK-A 690 705 15 15 253 BOSS-B 930 940 10 15
239 COOK-A 790 825 35 15 100 BOSS-B 1010 1025 15 20
85 COOK-A 858 874 16 20 123 BOSS-B 1239 1255 16 20
92 COOK-A 917 933 16 20 297 BOSS-B 1280 1290 10 15

78

141 BOSS-B 1369 1379 10 20
4 2015 147 P00-A 15 35 20 15

1510a 20 15 6 POG-A 61 73 12 20
8 LI ON-A 191 20 11 20 160 g3GO-A 90 105 15 15

23 LION-A 239 20 12 Puo0-A 169 173 14 20
27 LION-A 308 322 14 20 169 POGO-A 190 205 1515
191 LION-A 337 347 10 15 20 POGO-A 232 246 1420
19l E81:A 176 J80 5 is 24 POGO-A 268 283 15 20
0 L 1: 860 1 183 POGO-k 300 345 s15

48 LIOQ-A 5115241320 35 POGQ-A 383 399 16 20
228 LTuN-A I90 7102015 40 POGO-A 427 441 14 20
80 QN8--A 808 822 16 20 45 POGO-A 483 500 17 20
91 L A 904 919 15 20 205 POGO-A 515 530 15 15
98 LION-A 997 1011 14 20 51 POGO-A 556 571 15 20
262 LION-A 1026 1046 20 15 215 POGO-A 586 596 10 15
107 LION-A 1094 1108 14 20 57 POGO-A 623 636 13 20
118 LION-A 1194 1210 16 20 62 POGO-A 664 680 16 20
30 LION-A 1298 1311 13 20 231 POGO-A 695 700 5 15
143 LION-A 1393 1402 9 20 7 A 7317441320
0 LION-B 20 25 5 15 73 POGO-A 766 782 16 20

157 LION- 60 180 120 15 79 POGO-A 823 34 11 20
173 LION-I 195 210 15 15 84 PoGo-A 86 81 1 0
31OLION-B 336 350 14 20 256 POGO-A 910 925 15 15
200 LION-B 390 420 30 15 263 POGO-A 950 95 26 21
207 LION-B 480 525 45 15 269 POGO-A 995 1006 10 15
241 LION-B 810 845 35 15 100 POGO-A 1032 1049 17 20
90 LION-B 900 913 13 20 106 POGO-A 1077 1089 12 20
99 LION-B 1002 1016 14 20 111 POGO-A 1133 1150 17 20
272 LION-B 1080 1100 20 15 288 POGO-A 1165 1175 10 15
300 LION-B 1300 1310 10 15 116 POGO-A 1203 1217 14 20
305 LION-B 1365 1405 40 15 122 POGO-A 1274 1289 15 20
15 GUAM-A 171 183 12 20 304 POGO-A 1304 1314 10 15
20 GUAM-A 211 229 17 20 135 POGO-A 1374 1390 16 20
28 GUAM-A 3 0 319 11 20 316 POGO-A 1406 1440 36 15
39 GUAM-A 403 417 14 20 143 POGO-B 0 15 15 15
53 GUAN-A 578 594 16 20 154 POGO-B 60 105 45 15
63 GUAM-A 645 661 18 20 9 POGO-B 135 149 14 20
77 GUAM-A 797 810 13 20 15 POGO-B 185 202 17 20
94 GUAM-A 976 991 15 20 26 POGO-B 283 299 16 20
105 GUAM-A 1064 1078 14 20 28 POGO-B 324 336 12 20
274 GUAN-A 1105 1200 95 15 33 POGO-B 361 373 12 20
122 GUAM-A 1226 1241 15 20 194 POGO-B 395 405 10 15
291 GUAN-A 1260 1280 20 15 195 POGO-B 420 435 15 15
299 GUAM-A 1295 1305 10 15 42 POGO-B 459 476 17 20
135 GUAM-A 1327 1342 15 20 199 POGO-B 491 506 16 15
304 GUAM-A 1357 1377 20 15 49 POGO-B 528 544 16 20
235 GUAM-B 725 915 190 15 53 POGO-B 574 591 17 20
103 GUAM-B 1036 1046 10 20 221 POGO-B 606 621 15 15
296 GUAM-B 1276 1290 15 15 63 POGO-B 664 680 16 20
136 GUAM-B 1332 1346 14 20 71 POGO-B 745 759 14 20
3 PIKE-A 19 30 11 20 77 POGO-B 789 804 15 20
6 PIKE-A 82 97 15 20 81 POGO-B 845 860 15 20
172 PIKE-A 180 360 180 15 87 P0GO-B 894 906 12 20
54 PIKE-A 581 595 14 20 93 POGO-B 945 961 16 20
61 PIKE-A 635 648 13 20 270 POGO-B 1000 1020 20 15
66 PIKE-A 678 692 14 20 274 POGO-B 1035 1050 15 15
73 PIKE-A 732 746 14 20 278 POGO-B 1065 1075 10 15
81 PIKE-A 815 832 17 20 285 POGO-B 1120 1135 15 15
263 PIKE-A 990 1035 45 15 114 POGO-B 1172 1187 15 20
110 PIKE-A 1112 1126 14 20 118 POGO-B 1234 1251 17 20
115 PIKE-A 1154 1169 15 20 124 POGO-B 1279 1291 12 20
120 PIKE-A 1212 1228 16 20 130 POGO-B 1341 1357 16 20
134 PIKE-A 1320 1365 45 20 138 POGO-B 1406 1423 17 20
11 REEF-A 123 139 16 20 146 POGO-C 15 25 10 15
22 REEF-A 226 237 11 20 153 POGO-C 55 90 35 15
187 REEF-A 300 320 20 15 163 POGO-C 105 140 35 15
33 REEF-A 357 372 15 20 13 POGO-C 163 173 10 20
40 REEF-A 422 433 11 20 166 POGO-C 188 203 15 15
213 REEF-A 515 535 20 15 22 POGO-C 258 274 16 20
59 REEF-A 621 635 14 20 179 POGO-C 289 299 10 15
71 REEF-A 719 731 12 20 184 POGO-C 315 320 5 15
74 REEF-A 776 788 12 20 32 POGO-C 358 375 17 20
87 REEF-A 875 891 16 20 190 POGO-C 390 405 15 15
116 REEF-A 1171 1186 15 20 39 POGO-C 426 441 15 20
126 REEF-A 1272 1287 15 20 201 POGO-C 480 525 45 15
137 REEF-A 1335 1347 12 20 52 POG-C 561 578 17 20
146 REEF-A 1431 1445 14 20 60 POGO-C 645 657 12 20

227 POGO-C 680 690 10 15
?34 POGO-C 720 730 10 15

2 POGO-C 751 765 14 20
238 POGO-C 780 815 35 15
240 POG-C 830 845 15 15
249 POGO-C 860 880 20 15
254 POGO-C 910 920 10 15

Da" 4 96 POGO-C 977 990 13 20102 POGO-C 1041 1055 14 20

79

284 POGO-C 1110 1155 45 15 248 COOK-B 850 866 15 15
287 PoGo-C 1170 1185 16 523 COo-B o00 945 45 15

PoGo-C 1200 1215 15 1 2 2CO•-B 6097o 1015
P0 ;888-C I4712ý3 1620 267 COOK:-B IS9036516615

1247 0 1320 15 20 144 IEDI-A 30 616 66 15
134 POGO-C 1389 13 j 132 152 IUDI-A 53 63 10 15
39 POGO-C 1407 1420 13 20 161 INDI-A 90 100 10 15
119 d---o25 10 15o 15 119 JR A o115131 205 15

150 "ULA-A 85 105 20 15 171 IDI-A 220 J86 45,15
10 HUA-A 142 15 15 20 182 1 I-A 00 5 6515
17 HULA-A 199 216 17 20 185 I•,rI-A 320 330 10 15
167 HULA-A 231 236 5 15 186 I1DI-A 345 365 20 15
174 M-A 251 271 20 15 192 IIDI-A 390 415 25 15
181H -A 290 295 5 15 198 IIDI-A 450 470 20 1
188 HULA-A 345 390 45 15 203 INDI-A 500 505 5 15
38 HULA-A 419 430 11 20 206 IIDI-A 520 540 20 15
202 HULA-A 490 500 10 15 212 INDI-A 560 570 10 15
48 A-A 522 533 11 20 210 INDI-A 588 595 10 15
218 HULA-A 580 600 20 15 224 INDI-A 66 665 5 15
211 HULA-A 615 635 20 15 223 INDI-A 680 700 20 15
225 HULA-A 660 670 10 15 68 INDI-A 728 735 15 20
232 HULA-A 705 720 15 15 239 INDI-A 800 810 10 15
233 HULA-A 735 750 16 15 242 INDI-A 830 850 20 15
78 HULA-A 804 818 14 20 251 INDI-A 870 890 20 15
247 HULA-A 850 925 75 15 250 INDI-A 905 925 20 15
258 HULA-A 940 945 5 15 94 IIDI-A 948 964 16 20
95 HULA-A 976 993 17 20 259 INDI-A 979 989 10 15
99 HULA-A 1032 1047 15 20 273 IEDI-A 1020 1025 6 15
107 HULA-A 1079 1091 12 20 272 IIDI-A 1040 1050 10 15
286 HAA-A 1125 1130 5 15 276 INDI-A 1065 1080 15 15
291 A-A 1185 1190 5 15 282 INDI-A 1105 1200 95 15
296 HULA-A 1230 1275 46 15 292 INDI-A 1215 1235 20 15
302 HULA-A 1290 1330 40 15 298 INDI-A 1255 1280 25 15
136 HULA-A 1377 1390 13 20 301 IIDI-A 1295 1305 10 15
309 HULA-A 1405 1415 10 15 131 INDI-A 1344 1357 13 20
318 HULA-A 1430 1445 15 15 137 INDI-A 1387 1399 12 20
158 HULA-B 70 80 10 15 315 INDI-A 1414 1424 10 15
164 HULA-B 140 160 20 15 311 INDI-A 1439 1444 5 16
172 HULA-B 225 230 5 15 5 BOSS-A 54 70 16 20
170 HULA-B 245 255 10 15 157 BOSS-A 85 90 5 15
180 HULA-B 285 305 20 15 8 BOSS-A 125 140 15 20
187 HULA-B 340 350 10 15 21 BOSS-A 252 262 10 20
191 HULA-B 385 395 10 15 177 BOSS-A 277 297 20 15
37 HULA-B 419 436 17 20 30 BOSS-A 349 365 16 20
47 HULA-B 515 526 11 20 36 BOSS-A 419 431 12 20
213 HULA-B 565 605 40 15 43 BOSS-A 469 481 12 20
228 HULA-B 680 695 15 15 204 BOSS-A 510 540 30 15
235 HULA-B 720 735 15 15 55 BOSS-A 584 597 13 20
241 HULA-B 820 825 5 15 214 BOSS-A 612 632 20 15
83 HULA-B 866 880 14 20 65 BOSS-A 667 682 15 20
90 HULA-B 902 915 13 20 236 BOSS-A 750 770 20 15
261 HULA-B 950 960 10 15 245 BOSS-A 840 850 10 15
98 HULA-B 994 1009 15 20 252 BOSS-A 885 890 5 16
266 HULA-B 1024 1044 20 15 97 BOSS-A 979 994 15 20
109 HULA-B 1095 1110 15 20 271 BOSS-A 1020 1040 20 15
289 HULA-B 1155 1180 25 15 275 BOSS-A 1055 1065 10 15
294 HULA-B 1200 1245 45 15 279 BOSS-A 1080 1090 10 15
123 HULA-B 1275 1290 15 20 281 BOSS-A 1105 1120 15 15
300 HULA-B 1305 1320 15 15 117 BOSS-A 1226 1241 15 20
307 HULA-B 1345 1360 15 15 303 BOSS-A 1285 1295 10 15
4 COOK-A 52 65 13 20 128 BOSS-A 1326 1342 16 20
165 COOK-A 160 165 5 15 314 BOSS-A 1380 1385 5 15
19 COOK-A 227 241 14 20 142 BOSS-A 1434 1448 14 20
175 COOK-A 256 261 5 15 2 BOSS-B 24 40 16 20
29 COOK-A 349 363 14 20 156 BOSS-B 60 360 300 15
189 COOK-A 378 393 15 15 196 BOSS-B 425 440 15 15
209 COOK-A 540 550 10 15 200 BOSS-B 480 485 5 15
219 COOK-A 585 600 15 15 54 BOSS-B 576 592 16 20
229 COOK-A 680 715 35 15 220 BOSS-B 607 617 10 15
244 COOK-A 840 850 10 15 59 BOSS-B 639 656 17 20
86 COOK-A 889 905 16 20 67 BOSS-B 685 701 16 20
257 COOK-A 925 955 30 15 237 BOSS-B 760 775 15 15
264 COOK-A 970 975 6 15 243 BOSS-B 840 1320 480 15
268 COOK-A 990 1035 45 15 133 BOSS-B 1366 1380 14 20
103 COOK-A 1058 1073 15 20 312 BOSS-B 1395 1415 20 15
283 COOK-A 1105 1120 15 15 145 LION-A 10 15 5 15
297 COOK-A 1245 1260 15 15 162 LION-A 90 115 25 15
125 COOK-A 1284 1300 16 20 18 LION-A 223 237 14 20
141 COOK-A 1426 1440 14 20 25 LION-A 269 284 15 20
3 COOK-B 48 61 13 20 34 LION-A 380 396 16 20
173 COOK-B 225 275 50 15 197 LION-A 450 455 5 15
193 COOK-B 390 415 25 15 44 LION-A 482 496 14 20
207 COOK-B 530 545 15 15 208 LION-A 540 565 25 15
217 COOK-B 570 580 10 15 222 LION-A 605 625 20 15
226 COOK-B 660 675 15 15 66 LION-A 675 689 14 20

80

230 LION-A 704 724 20 15 86 POGO-A 879 891 12 20
74 ELIO-A 776 792 16 20 87 POGO-A 911 922 11 20
80 LO-A 839 851 12 20 92 P000-A 94 960 13 20
88 LION-A 898 913 15 20 253 POGO-A 975 990 15 15
260 LION-A 935 955 20 15 261 POGO-A 1005 1020 15 15
101 LION-A 1033 1046 13 20 103 POGO-A 1048 1061 13 20
104 LION-A 1066 1079 13 20 270 POGO-A 1100 111 15 15
110 LION-A 1127 1136 9 20 273 POGO-A 1130 1140 10 15
290 •ON-A 1170 1190 20 15 276 POGO-A 1165 117 610 15
295 LION-A 1208 1218 10 15 120 POGO-A 1211 1227 16 20
121 LION-A 1268 1282 14 20 285 POGO-A 1255 1280 25 15
310 LION-A 1360 1375 15 15 129 POGO-A 1310 1326 16 20
317 LION-A 1410 1430 20 15 295 POGO-A 1350 1365 15 15
151 LION-B 45 480 435 15 139 POGO-A 1410 1426 16 20
216 LION-B 570 595 25 15 143 POGO-B 0 10 10 15
85 LION-B 878 890 12 20 4 POGO-B 35 51 16 20
91 LION-B 931 945 14 20 153 POGO-B 66 81 15 15
265 LION-B 990 1035 45 15 156 POGO-B 96 101 5 15
280 LION-B 1080 1100 20 15 11POGO-B 129 143 14 20
113 LION-B 1166 1181 16 20 16 POGO-B 167 181 14 20
306 LION-B 1340 1360 20 15 20 POGO-B 204 217 13 20
313 LION-B 1380 1435 55 15 23 POGO-B 263 278 15 20
14 GUAM-A 182 198 16 20 176 POGO-B 293 303 10 15
27 GUAM-A 285 297 12 20 30 POGO-B 328 344 16 20
31 GUAM-A 352 367 15 20 36 POGO-B 391 404 13 20
61 GUAM-A 653 664 11 20 40 POGO-B 429 445 16 20
69 GUAM-A 726 741 15 20 46 POGO-B 489 503 14 20
246 GUAM-A 840 885 45 15 198 POGO-B 518 523 5 15
92 GUAM-A 945 961 16 20 52 POGO-B 545 562 17 20
277 GUAM-A 1055 1170 115 15 56 PGO-B 587 602 15 20
126 GUAM-A 1298 1314 16 20 62 POGO-B 633 649 16 20
308 GUAM-A 1350 1370 20 15 68 POGO-B 684 699 15 20
23 GUAM-B 260 315 55 20 77 P0GO-B 781 795 14 20
89 GUAM-B 900 940 40 20 82 POGO-B 838 854 16 20
299 GUAM-B 1260 1280 20 15 240 POGO-B 869 899 30 15
305 GUAM-B 1320 1485 165 15 251 POGO-B 914 929 15 15
11 PIKE-A 153 170 17 20 95 POGO-B 955 966 11 20
176 PIKE-A 245 255 10 15 260 POGO-B 990 1000 10 15
41 PIKE-A 449 464 15 20 100 POGO-B 1020 1036 16 20
50 PIKE-A 550 565 15 20 107 POGO-B 1071 1086 15 20
56 PIKE-A 612 626 14 20 109 POGO-B 1120 1137 17 20
64 PIKE-A 665 679 14 20 275 POGO-B 1152 1162 10 15
76 PIKE-A 787 803 16 20 115 POGO-B 1189 1202 13 20
108 PIKE-A 1082 1094 12 20 123 POGO-B 1246 1260 14 20
115 PIKE-A 1182 1198 16 20 127 POGO-B 1290 1305 15 20
129 PIKE-A 1327 1341 14 20 292 POGO-B 1335 1350 15 15
140 PIKE-A 1422 1435 13 20 137 POGO-B 1392 1408 16 20
148 REEF-A 20 40 20 15 304 POGO-B 1423 1433 10 15
7 REEF-A 94 110 16 20 6 POGO-C 67 84 17 20
16 REEF-A 196 210 14 20 160 POGO-C 105 120 15 15
178 REEF-A 270 290 20 15 17 POGO-C 168 184 16 20
46 REEF-A 490 506 16 20 169 POGO-C 220 275 55 15
58 REEF-A 626 638 12 20 182 POGO-C 330 345 15 15
82 REEF-A 846 862 16 20 190 POGO-C 375 395 20 15
255 REEF-A 910 930 20 15 195 POGO-C 420 435 15 15
112 REEF-A 1142 1155 13 20 192 POGO-C 450 460 10 15
119 REEF-A 1242 1257 15 20 199 POGO-C 480 495 15 15
132 REEF-A 1364 1378 14 20 51 POGO-C 531 547 16 20

220 POGO-C 580 595 15 15
63 POGO-C 642 658 16 20
228 POGO-C 673 683 10 15
70 POGO-C 714 728 14 20
73 POGO-C 748 764 16 20
243 POGO-C 845 860 15 15
88 POGO-C 914 929 15 20

Day 5 93 POGO-C 949 962 13 20
254 POGO-C 977 1007 30 15

3 POGO-A 31 43 12 20 267 POGO-C 1050 1060 10 15
144 POGO-A 58 73 15 15 113 POGO-C 1152 1166 14 20
8 POGO-A 97 109 12 20 125 POGO-C 1256 1268 12 20
12 POGO-A 136 153 17 20 289 POGO-C 1283 1323 40 15
166 POGO-A 185 200 15 15 133 POGO-C 1346 1361 15 20
21 POGO-A 228 243 15 20 301POGO-C 139514303515
24 POGO-A 268 284 16 20 149 PULO-A 30 50 20 15
32 POGO-A 360 375 15 20 146 HULA-A 65 70 5 1537 POGO-A 414 427 13 20 164 H -A 135 15 20 5 15
45 POGO-A 469 485 16 20 18 HULA-A 187 203 16 20
49 POGO-A 516 531 15 20 170 HULA-A 240 260 20 15
213 POGO-A 570 580 10 15 178 HULA-A 280 295 15 15
59 POGO-A 613 625 12 20 171 HULA-A 310 325 15 15
221 POGO-A 640 650 10 15 185 HULA-A 340 350 10 15
229 POGO-A 675 690 15 15 35 HULA-A 389 404 15 20
232 POGO-A 705 715 10 15 39 HULA-A 426 437 11 20
235 POGO-A 730 745 15 15 202 HULA-A 485 495 10 15
76 POGO-A 775 789 14 20 204 HULA-A 510 530 20 15
79 POGO-A 814 829 15 20 215 HULA-A 570 580 10 15

81

216 HULA-A 696 606 10 16 264 INDI-A 1040 1060 10 15
224 •H -A 130 36 5 16 265 IIDI-A 1066 1076 10 15
226 -A 60 666 15 16 266 INDI-A 1090 1096 6 15
71 HULA-A 716 732 16 20 278 IIDI-A 1180 1186 6 16
237 HULA-A 766 800 35 16 282 INDI-A 1208 1218 10 15
81 HULA-A 836 860 16 20 279 INDI-A 1233 1243 10 16
249 HULA-A 896 940 46 16 288 INDI-A 1280 1290 10 16
97 HULA-A 962 978 16 20 130 IIDI-A 1313 13f8 15 20
99 HULA-A 1000 1014 14 20 294 INDI-A 1360 13 0 0 16
256 HULA-A 1029 1044 16 15 298 IIDI-A 1385 1390 6 15
106 HULA-A 1064 1077 13 20 140 IIDI-A 1417 1431 14 20
272 HULA-A 1110 1115 5 16 148 Boss-A 23 38 16 16
269 HUA-A 1130 11365 16 7 BOSS-A 92 108 16 20
274 HULA-A 1160 1176 26 15 162 BOSS-A 136 160 15 16
118 HULA-A 1205 1218 13 20 176 BOSS-A 270 290 20 16
281 HULA-A 1233 1238 6 15 28 BOSS-A 319 336 16 20
284 HULA-A 1266 1265 10 16 189 BOSS-A 375 390 15 16
128 HULA-A 1305 1320 15 20 41 BOSS-A 449 463 14 20
136 HULA-A 1358 1374 16 20 48 BOSS-A 499 512 I1 20
297 HULA-A 1389 1399 10 15 55 BOSS-A 562 67. 20
151 HULA-B 46 80 36 15 61 BOSS-A 626 643 17 20
161 HULA-B 125 140 15 16 223 BOSS-A 668 668 10 15
165 HULA-B 180 195 15 16 234 BOSS-A 716 910 195 15
26 HULA-B 289 302 13 20 94 BOSS-A 950 963 13 20
29 HULA-B 322 338 16 20 104 BOSS-A 1060 1066 16 20
34 HULA-B 375 390 16 20 114 BOSS-A 1161 1174 13 20
187 HULA-B 405 420 15 16 121 BOSS-A 1214 1229 15 20
47 HULA-B 489 603 14 20 131 BOSS-A 1313 1330 17 20
207 HULA-B 636 660 25 15 299 BOSS-A 1380 1400 20 15
210 HULA-B 576 616 40 15 142 BOSS-A 1437 1453 16 20
214 HULA-B 630 640 10 15 146 BOSS-B 6 10 5 15
227 HULA-B 665 700 35 15 9 BOSS-B 112 128 16 20
233 HULA-B 715 720 5 16 180 BOSS-B 320 330 10 16
238 HULA-B 775 810 36 16 188 BOSS-B 371 400 29 15
244 HULA-B 850 870 20 16 194 BOSS-B 420 430 10 15
248 HULA-B 890 900 10 15 201 BOSS-B 485 600 16 16
268 HULA-B 990 1010 20 16 54 BOSS-B 666 667 11 20
280 HULA-B 1190 1200 10 15 58 BOSS-B 600 616 15 20
290 HULA-B 1290 1295 5 15 66 BOSS-B 656 672 16 20
293 HULA-B 1340 1350 10 16 236 BOSS-B 760 770 20 15
155 COOK-A 70 75 5 16 246 BOSS-B 870 880 10 16
172 COOK-A 265 266 10 16 259 BOSS-B 990 1650 660 15
177 COOK-A 280 295 16 16 1 LION-A 20 36 16 20
184 COOK-A 330 375 46 15 169 LION-A 90 110 20 15
191 COOK-A 390 406 15 16 19 LION-A 203 216 13 20
200 COOK-A 480 495 15 15 22 LION-A 261 262 11 20
206 COOK-A 520 635 15 16 26 LION-A 300 314 14 20
218 COOK-A 570 680 10 15 31 LION-A 351 367 16 20
226 COOK-A 645 650 5 16 42 LION-A 453 468 15 20
78 COOK-A 794 808 14 20 206 LION-A 515 536 20 16
84 COOK-A 860 876 16 20 219 LION-A 670 590 20 16
96 COOK-A 962 976 13 20 217 LION-A 605 626 20 15
262 COOK-A 1010 1025 16 16 65 LION-A 645 668 13 20
277 COOK-A 1170 1215 46 15 72 LION-A 746 762 17 20
124 COOK-A 1254 1270 16 20 85 LION-A 869 882 13 20
287 COOK-A 1285 1290 5 15 91 LION-A 929 944 15 20
134 COOK-A 1356 1367 11 20 256 LION-A 960 1020 60 15
173 COOK-B 260 730 470 16 106 LION-A 1060 1073 13 20
241 COOK-B 825 870 45 16 111 LION-A 1136 1163 17 20
247 COOK-B 886 930 45 16 116 LION-A 1189 1203 14 20
283 COOK-B 1235 1285 60 16 126 LION-A 1267 1282 15 20
136 COOK-B 1361 1373 12 20 300 LION-A 1395 1400 5 15
162 INDI-A 53 63 10 15 141 LION-A 1430 1444 14 20
167 INDI-A 80 90 10 15 154 LION-B 60 360 300 15
168 INDI-A 105 110 5 15 196 LION-B 440 460 20 15
163 INDI-A 136 140 6 15 209 LION-B 660 670 10 15
15 INDI-A 166 182 16 20 222 LION-B 620 650 30 16
167 INDI-A 210 220 10 16 83 LION-B 847 861 14 20
168 INDI-A 236 256 20 16 102 LION-B 1038 1060 12 20
179 INDI-A 286 290 6 15 263 LION-B 1066 1085 20 15
181 INDI-A 330 335 6 15 271 LION-B 1110 1195 85 15
186 INDI-A 360 360 10 16 122 LION-B 1239 1264 15 20
183 INDI-A 376 395 20 15 296 LION-B 1365 1415 50 16
38 INDI-A 417 430 13 20 302 LION-B 1430 1450 20 15
197 INDI-A 460 470 20 15 13 GUAM-A 152 167 15 20
203 INDI-A 505 510 5 15 174 GUAM-A 265 285 20 15
208 INDI-A 640 5665 15 15 33 GUAM-A 367 381 14 20
212 INDI-A 570 680 10 16 44 GUAM-A 466 476 10 20
231 INDI-A 690 696 5 16 211 GUAM-A 560 670 10 15
230 INDI-A 710 730 20 16 60 GUAM-A 623 637 14 20
239 INDI-A 800 810 10 15 89 GUAM-A 916 931 16 20
242 INDI-A 830 860 20 16 101 GUAM-A 1031 1044 13 20
245 INID-A 870 890 20 15 108 GUAM-A 1095 1109 14 20
250 INDI-A 906 910 5 15 117 GUAM-A 1194 1204 10 20
252 INDI-A 935 955 20 16 286 GUAM-A 1260 1280 20 15
257 INDI-A 990 1010 20 16 291 GUAM-A 1320 1485 165 15

82

193 GUAM-B 406 450 46 15 254 POGO-B 1045 1065 10 16
110 GUAM-B 1128 1141 13 20 103 POGO-B 1086 1099 13 20
2 PIKE-A 27 38 11 20 107 POGO-B 1119 1132 13 20
10 PIKE-A 125 141 16 20 266 POGO-B 1150 1165 15 15
27 PIKE-A 306 321 15 20 264 POGO-B 1180 1195 15 15
53 PIKE-A 548 560 12 20 120 POGO-B 1234 1246 12 20
57 PIKE-A 699 611 12 20 122 POGO-B 1279 1295 16 20
64 PIKE-A 641 658 14 20 129 POGO-B 1317 1333 16 ý0
69 PIKE-A 695 710 15 20 134 POGO-B 1353 1367 14 20
75 PIKE-A 768 774 16 20 142 POGO-B 1413 1427 14 20
112 PIKE-A 1152 1168 16 20 148 POGO-C 40 76 35 15
303 PIKE-A 1410 1430 20 15 166 POGO-C 90 110 20 15
147 REEF-A 10 30 20 15 161 POGO-C 130 150 20 15
6 REEF-A 67 81 14 20 18 POGO-C 199 213 14 20
43 REEF-A 460 476 16 20 30 POGO-C 298 310 12 20
67 REEF-A 684 698 14 20 179 POGO-C 330 340 10 15
80 REEF-A 818 834 16 20 181 POGO-C 360 375 15 15
90 REEF-A 921 932 11 20 38 POGO-C 399 415 16 20
98 REEF-A 975 993 18 20 188 POGO-C 430 445 15 15
268 REEF-A 1080 1100 20 15 197 POGO-C 480 496 15 15
119 REEF-A 1211 1227 16 20 51 POGO-C 517 533 16 20
132 REEF-A 1320 1332 12 20 58 POGO-C 588 602 14 20
138 REEF-A 1394 1409 15 20 211 POGO-C 617 632 15 15
305 REEF-A 1425 1435 10 15 218 POGO-C 675 710 35 15

76 POGO-C 782 797 15 20
231 POGO-C 845 865 20 15
84 POGO-C 888 899 11 20
239 POGO-C 914 929 15 15
247 POGO-C 985 995 10 15
110 POGO-C 1126 1137 11 20
267 POGO-C 1160 1170 10 15

Day 6 270 POG-C 1185 1195 10 15
118 POGO-C 1222 1234 12 20

6 POGO-A 70 86 16 20 128 POGO-C 1312 1325 13 20
10 POGO-A 107 124 17 20 281 POGO-C 1340 1350 10 15
159 POGO-A 139 144 6 15 286 POGO-C 1365 1380 15 15
15 POGO-A 172 186 14 20 141 PO0-C 1413 1428 15 20
19 POGO-A 210 226 16 20 147 HULA-A 30 50 20 15
24 POGO-A 294 270 16 20 158 HULA-A 90 95 5 15
29 POGO-A 298 314 16 20 160 HULA-A 120 125 5 15
36 POGO-A 354 370 16 20 16 HULA-A 174 190 16 20
39 POGO-A 401 414 13 20 167 HULA-A 230 240 10 15
44 POGO-A 454 471 17 20 25 HULA-A 275 290 15 20
49 POGO-A 500 516 16 20 174 HULA-A 310 330 20 15
55 POGO-A 555 572 17 20 36 HULA-A 359 373 14 20
64 POGO-A 620 636 16 20 40 HULA-A 408 423 15 20
68 POGO-A 682 696 14 20 191 ULA-A 450 465 15 15
73 POGO-A 719 735 16 20 195 HULA-A 480 490 10 15
79 POGO-A 812 826 14 20 202 HULA-A 520 525 5 15
82 POGO-A 863 876 13 20 206 HULA-A 555 595 40 15
240 POGO-A 900 915 15 15 215 HULA-A 645 660 15 15
95 POGO-A 988 999 11 20 220 HULA-A 700 710 10 15
100 POGO-A 1020 1033 13 20 225 HULA-A 780 790 10 15
251 POGO-A 1048 1053 5 15 230 HULA-A 840 855 15 15
104 POGO-A 1101 1116 15 20 235 HULA-A 870 880 10 15
257 POGO-A 1131 1136 5 15 93 HULA-A 948 963 15 20
111 POGO-A 1174 1187 13 20 250 HULA-A 990 1010 20 15
117 POGO-A 1218 1232 14 20 102 HULA-A 1048 1063 15 20
277 POGO-A 1250 1275 25 15 255 HULA-A 1078 1083 5 15
126 POGO-A 1310 1326 16 20 261 HULA-A 1110 1125 15 15
285 POGO-A 1341 1356 15 15 263 HuLA-A 1140 1160 20 15
135 POGO-A 1379 1395 16 20 114 HULA-A 1200 1215 15 20
297 POGO-A 1415 1425 10 15 276 HULA-A 1245 1250 5 15
S POO-B 53 69 16 20 131 HUA-A 1328 1342 14 20
9 POGO-B 102 116 14 20 289 HUA-A 1375 1385 10 15
14 POGO-B 153 170 17 20 290 HULA-A 1400 1405 5 15
162 P0G0-B 185 200 15 15 144 HULA-A 1429 1444 16 20
21 P0GO-B 225 236 11 20 146 HULA-B 30 45 15 15
173 POGO-B 270 280 10 15 151 HULA-B 60 85 25 15
33 P0G0-B 324 336 12 20 163 HULA-B 190 200 10 15
177 P0GO-B 351 356 5 16 165 HULA-B 220 270 50 15
186 POGO-B 385 395 10 15 27 HULA-B 293 309 16 20
41 POG-B 422 436 14 20 182 HULA-B 360 370 10 15
192 POGO-B 451 466 15 15 187 HULA-B 405 430 25 15
198 POGO-B 485 495 10 15 45 HULA-B 457 473 16 20
52 POGO-B 520 534 14 20 194 HULA-B 488 493 5 15
57 P0G0-B 581 593 12 20 200 HULA-B 510 555 45 15
62 POGO-B 617 632 15 20 212 HULA-B 600 646 45 15
217 P0G0-B 665 675 10 15 232 HULA-B 850 885 35 16
70 POGO-B 715 729 14 20 90 HULA-B 927 941 14 20
224 POGO-B 770 806 35 15 241 HULA-B 956 971 15 15
229 POGO-B 840 856 15 15 243 HULA-B 986 991 5 15
83 POGO-B 882 898 16 20 101 HULA-B 1037 1053 16 20
89 POGO-B 924 938 14 20 268 HULA-B 1080 1125 45 15
244 POGO-B 960 975 15 15 271 HULA-B 1200 1215 15 15
97 POGO-B 1007 1023 16 20 278 HULA-B 1275 1315 40 15

83

284 HULA-B 1335 1345 10 15 140 BOSS-A 1408 1424 16 20
296 BULA-8 1410 1445 35 16 60 BOSS-B 514 526 12 20
1 COOK-A 11 25 14 20 208 BOSS-B T70 590 20 15
149 COOK-A 45 80 35 15 209 BOSS-B 606 620 15 15
166 COOK-A 226 230 5 15 66 BoSS-B 647 663 16 20
168 COOK-A 245 265 20 15 236 BOSS-B 885 930 45 15
34 COOK-A 327 343 16 20 124 BOSS-B 1288 1298 10 20
183 COOK-A 375 405 30 15 137 BOSS-B 1386 1403 17 20
1 K3 cooK-A 455 465 10 15 299 BOSS-B 1430 1450 20 15
191 COOK-A 480 490 10 15 153 LIoN-A 52 62 10 15
20 COOK-A 535 560 25 15 7 LION-A 89 106 17 20
205 COOK-A 576 595 20 15 17 LION-A 188 203 15 20
222 COOK-A 750 755 6 15 22 LION-A 233 247 14 20
233 COOK-A 860 880 30 16 35 LION-A 323 338 15 20
237 COOK-A 895 935 40 15 178 LION-A 353 383 10 15
246 COOK-A 976 1020 45 15 42 LION-A 424 440 16 20
259 COOK-A 1095 1110 15 15 53 LION-A 627 537 10 20
268 COOK-A 1170 1185 1 15 61 LION-A 615 626 11 20
119 COOK-A 1223 1239 16 20 71 LIOG-A 715 731 16 20
130 COOK-A 1320 1365 45 20 75 LION-A 766 771 15 20
138 COOK-A 1392 1406 14 20 78 LION-A 806 814 9 20
293 COOK-A 1421 1436 15 15 86 LION-A 897 910 13 20
2 COOK-B 17 32 15 20 98 LION-A 1011 1021 10 20
31 COOK-B 315 329 14 20 106 LION-A 1108 1124 16 20
184 COOK-B 380 395 15 15 116 LIOI-A 1210 1225 15 20
199 COOK-B 510 530 20 15 294 LION-A 1405 1420 15 15
221 COOK-B 715 900 185 15 292 LIO0-A 1435 1445 10 15
91 COOK-B 933 948 15 20 150 LION-B 45 480 435 15
274 COOK-B 1225 1270 46 15 213 LION-B 605 625 20 15
291 COOK-B 1390 1646 256 15 80 LION-B 816 831 15 20
145 INDI-A 20 25 5 16 87 LION-B 899 913 14 20
4 IUDI-A 52 66 14 20 96 LION-B 994 1009 15 20
157 INDI-A 81 91 10 15 260 LION-B 1110 1190 80 15
12 INDI-A 138 152 14 20 272 LION-B 1207 1217 10 15
164 INDI-A 210 230 20 15 139 LION-B 1401 1413 12 20
171 INDI-A 265 285 20 15 298 LION-B 1430 1440 10 15
170 INDI-A 300 305 5 15 155 GUAM-A 60 100 40 15
175 INDI-A 320 330 10 15 20 GUAM-A 223 238 15 20
180 INDI-A 350 400 50 15 176 GUAM-A 330 350 20 15
185 INDI-A 415 430 15 15 37 GUAM-A 397 412 15 20
190 IDI-A 450 470 20 15 48 GUAM-A 494 508 14 20
201 INDI-A 515 535 20 15 59 GUAM-A 694 609 15 20
204 INDI-A 550 560 10 15 94 GUAM-A 987 1000 13 20
207 INDI-A 575 585 10 15 109 GUAM-A 1125 1140 15 20
214 INDI-A 615 620 5 15 121 GUAM-A 1241 1257 16 20
210 INDI-A 635 640 5 15 132 GUAM-A 1344 1355 11 20
219 INDI-A 690 710 20 16 287 GUAM-A 1370 1390 20 15
223 INDI-A 760 795 35 15 169 GUAM-B 255 730 475 15
227 INDI-A 810 850 40 15 248 GUAM-B 985 1390 405 15
228 INDI-A 865 870 5 15 8 PIKE-A 96 112 16 20
234 INDI-A 885 905 20 15 47 PIKE-A 489 505 16 20
242 IDI-A 935 955 20 15 67 PIKE-A 676 689 13 20
245 INDI-A 975 980 5 15 74 PIKE-A 732 747 15 20
249 INDI-A 995 1015 20 15 81 PIKE-A 831 847 16 20
253 INDI-A 1040 1050 10 15 125 PIKE-A 1294 1305 11 20
256 INDI-A 1080 1100 20 15 136 PIKE-A 1385 1399 14 20
262 INDI-A 1120 1145 25 15 3 REEF-A 40 51 11 20
269 INDI-A 1170 1215 45 15 13 REEF-A 138 154 16 20
273 INDI-A 1230 1240 10 15 23 REEF-A 246 260 14 20
123 INDI-A 1282 1298 16 20 43 REEF-A 430 445 15 20
282 INDI-A 1313 1318 5 15 63 REEF-A 619 633 14 20
280 INDI-A 1333 1338 5 15 69 REEF-A 686 700 14 20
288 INDI-A 1375 1425 50 15 77 REEF-A 789 805 16 20
295 INDI-A 1440 1460 20 15 85 REEF-A 891 905 14 20
152 BOSS-A 49 113 64 15 112 REEF-A 1181 1197 16 20
11 BOSS-A 135 150 15 20 133 REEF-A 1350 1365 15 20
26 BOSS-A 290 304 14 20 143 REEF-A 1425 1439 14 20
172 BOSS-A 319 339 20 15
189 BOSS-A 405 450 45 15
46 BOSS-A 481 495 14 20
54 BOSS-A 529 544 15 20
56 BOSS-A 580 591 11 20
65 BOSS-A 628 643 15 20
216 BOSS-A 660 670 10 15 Day 7
226 BOSS-A 800 810 10 15
88 BOSS-A 920 931 11 20
238 BOSS-A 946 956 10 15 143 POGO-A 15 30 15 15
99 BOSS-A 1019 1036 17 20 153 PGO-A 60 75 1 15
252 BOSS-A 1051 1071 20 15 155 POGO-A 90 105 15 15
108 BOSS-A 1121 1135 14 20 161 POGO-A 125 145 20 15
265 BOSS-A 1150 1155 5 15 164 POGO-A 190 200 10 15
113 BOSS-A 1191 1205 14 20 168 POGO-A 245 275 30 15
275 BOSS-A 1240 1250 10 15 177 P000-A 325 335 10 15279 BOSS-A 1280 1290 10 15 183 POGO-A 375 390 15 15
127 BOSS-A 1311 1321 10 20 191 POGO-A 420 435 15 15
283 BOSS-A 1336 1346 10 15 185 POGO-A 450 460 10 15

84

196 P0GO-A 500 546 46 15 195 H -A 480 496 15 1
51Pooo-A 5725881620 81 :A
208 P00-A 603 518 15 15 uLA b 0 1 15SO Po8-A 64 8611520 209 : 3A 660

13 P 0 8A 10 15 212 F -- 66 is
727PY00-A 7217 11 20 ,:A690 69565 152 0O-A?8 6 H A710 7010 15
H 1 P808-A 835 850 I5 15 75 HLA- 7 8771 20

POGO-A 878 895 11 2P79 HU-A 802 7816 4 20
88POGO- 921 91 10 20 95 HULA-A 966 980 14 20
%2 P00-A 946 1 15 15 239 HULA-A 995 1006 10 15
98 POGO-A 992 1004 12 20 102 M -A 1034 1049 15 20
251 POGO-A 1020 1035 15 15 249 HUL-A 1064 107 15 15
254 POGO-A 1050 1060 10 15 1 •-A 1112 1123 11 20
107 POGO-A 1091 1104 13 20 A 1138 1148 10 15
260 POGO-A 1119 1129 10 15 269 HULA-A 1170 1175 5 15
268 POGO-A 1155 1165 10 15 266 HULA-A 1190 1195 5 15
116 POGO-A 1195 1212 17 20 27 -A 1210 1255 45 15
119 •OGO-A 1249 1264 15 20 20 •-A 1285 1295 10 15
126 PQGO-A 1297 1313 16 20 2 W-A 1310 1320 10 15
282 POGO-A 1330 1342 12 15 284 W-A 1345 1360 15 15
134 POGO-A 1368 1384 16 20 139 A 1398 1414 16 20
295 POGO-A 1410 1420 10 15 9 HULA-B 136 151 15 20
291 POGO-A 1435 1445 10 15 24 HULA-B 265 280 1520
147 POGO-B 35 70 35 15 38 HULA-B 426 442 16 20
158 POGO-B 115 130 15 15 197 HULA-B 510 530 20 15
160 POGO-B 145 160 15 15 199 HLA&-B 545 560 15 15
163 POGO-B 175 190 15 15 203 A-B 575 615 40 15
170 POGO-B 265 275 10 15 211 HULA:B 630 645 15 15
.179 POGO-B 330 376 45 15 214 HULA-B 670 695 25 15
190 POGO-: 405 450 45 15 224 MUA-B 765 800 35 15
193 POGO-B 465 510 45 15 230 HUA-B 825 870 45 15
47 POGO-B 550 561 11 20 91 HULA-B 934 949 15 20
52 POGO-B 590 606 16 20 100 HULA-B 1008 1025 17 20
206 POGO-B 621 636 15 15 248 HULA-B 1040 1060 20 15
66 POGO-B 674 690 16 20 268 HULA-B 1090 1106 15 15
218 POGO-B 705 720 15 15 263 HMU•AB 1125 1150 25 15
73 POGO-B 745 759 14 20 270 B 1170 1186 15 15
80 POGO-B 821 831 10 20 122 HULA-B 1265 1280 15 20
82 POGO-B 851 867 16 20 278 HULA-B 1295 1335 40 15
235 POGO-B 895 910 15 15 293 HULA-B 1385 1420 35 15
92 POGO-B 938 952 14 20 2 COOK-A 49 63 14 20
99 POGO-B 994 1010 16 20 18 COOK-A 217 232 15 20
247 POGO-B 1025 1035 10 15 25 COOK-A 271 284 13 20
106 POGO-B 1081 1097 16 20 29 COOK-A 350 362 12 20
110 POGO-B 1118 1131 13 20 180 COOK-A 377 382 5 15
112 POGO-B 1159 1172 13 20 48 COOK-A 568 574 16 20
275 POGO-B 1215 1255 40 15 223 COOK-A 760 765 5 15
124 POGO-B 1289 1304 15 20 87 COOK-A 904 920 16 20
132 POGO-B 1348 1363 15 20 240 COOK-A 940 955 15
140 POGO-B 1400 1415 15 20 245 COOK-A 98 995 10 1
157 POGO-C 90 135 45 15 104 COOK-A 1071 1085 14 20
162 POGO-C 165 180 15 15 255 COOK-A 1100 111 15 15
167 POGO-C 240 255 15 15 264 COOK-A 1130 1145 15 15
173 POGO-C 285 330 45 15 276 COOK-A 1250 1275 25 15
184 POGO-C 375 405 30 15 125 COOK-A 1296 1309 14 20
194 POGO-C 480 490 10 15 285 COOK-A 1350 1365 15 15
200 POGO-C 530 555 25 15 141 COOK-A 1415 1429 14 20
53 POGO-C 598 614 16 20 207 COOK-B 570 595 25 15
62 POGO-C 651 663 12 20 225 COOK-B 765 800 35 15
68 POGO-C 691 707 16 20 241 COOK-B 940 970 30 15
74 POGO-C 751 766 15 20 259 COOK-B 1096 1140 45 15
232 POGO-C 840 860 20 15 142 COOK-B 1424 1438 14 20
234 POGO-C 885 930 45 15 150 IN1)I-A 51 61 10 15
244 POGO-C 975 1020 45 15 154 I1)DI-A 80 90 10 15
108 POGO-C 1094 1111 17 20 11 INDI-A 153 162 9 20
267 POGO-C 1140 1150 10 15 17 INDI-A 215 265 50 20
114 POGO-C 1182 1196 14 20 174 11)DI-A 300 310 10 15
118 POGO-C 1230 1244 14 20 178 INDI-A 330 350 20 15
121 POGO-C 1269 1284 15 20 182 INDI-A 370 375 5 15
128 POGO-C 1318 1331 13 20 188 1D1I-A 400 425 25 15
281 POGO-C 1346 1361 15 15 192 I1)DI-A 450 470 20 15
138 POGO-C 1381 1394 13 20 43 I1)DI-A 500 515 15 20
292 POGO-C 1409 1424 15 15 204 1D1I-A 560 570 10 15
145 HULA-A 30 50 20 15 56 I1D1-A 601 615 14 20
149 HULA-A 65 75 10 15 215 1i1D1-A 675 680 5 15
156 HULA-A 90 100 10 15 70 I1DI-A 710 725 15 20
159 HULA-A 120 130 10 15 228 1IDI-A 800 810 10 15
12 HULA-A 161 177 16 20 229 I1)DI-A 825 830 5 15
165 HULA-A 210 215 5 15 233 I1DI-A 870 890 20 15
22 HULA-A 262 277 15 20 236 I1DI-A 905 910 5 15
171 HULA-A 292 297 5 15 94 I1)DI-A 965 978 13 20
27 HULA-A 317 329 12 20 243 I1)DI-A 993 1003 10 15
32 HULA-A 359 374 15 20 252 INDI-A 1035 1040 5 15
181 HULA-A 389 404 15 15 253 I1ID1-A 1055 1065 10 15
38 HULA-A 443 455 12 20 256 ID I-A 1080 1100 20 15

85

262 IIDI-A 1115 1190 75 15 86 GUAM-, 890 935 45 20
IIP-A 22 15I593GUAM-!A956S971j 2016 0 103 GUAN-A 10591072132

J7? fEI:A 1223 J93 10 15 117 GUAM-A 1213 1228 15 28
8 IUI-A 12350 170 0 15 127 GUAM-A 131411328 142
J26 ~j:A138J 1391 10 1 8 UNB258 016 A 141 1431 156 39GUAM-B 449 4981020

BaSS-A 30 461620 S6PIKE-A 68841620
8 BOSS-A 130 145 15 20 16 PIKE-A 195 208 13 20
21 BOSS-A 2608273 13 20 57 PIE- 610 624 14 20
172 BOSS-A 288 293 5 15 63 PI A 659631420
176 BOSS-A 320 310 10 15 78 PIKE-A 802 818 16 20
31 BOSS-A 359 37 16 20 115 PIKE-A 1192 1208 16 20
187 BOSS-A 390 405 15 15 129 PIKE-A 1320 1365 45 20
189 BOSS-A 420 4255 15 144 RE-A 25 50 25 15
40 BOSS-A 463 475 12 20 6 REEF-A 109 126 17 20
44 BOSS-A 502 512 10 20 36 REEF-A 402 413 11 20
46 BOSS-A 534 648 14 20 59 REEF-A 620 632 12 20
54 BOSS-A 599 614 15 20 71 AREEF- 716 730 14 20
210 BOSS-A 630 640 10 15 76 REE-A 76 775 13 20
64 BOSS-A 667 681 14 20 84 REEF-A 862 877 15 20
219 BOSS-A 696 701 5 15 111 REEF-A 1151 1166 15 20
221 BOSS-A 720 730 10 15 133 REEF-A 1359 1372 13 20
222 BOSS-A 750 765 15 15
237 BOSS-A 930 940 10 15
96 BOSS-A 980 985 5 20
350 BOSS-A 1020 1040 20 15

61 BOSS-A 1110 1125 15 15
271 BOSS-A 1205 1225 20 15
283 BOSS-A 1345 1350 5 15
290 BOSS-A 1380 1400 20 15
289 BOSS-A 1415 1435 20 15
151 BOSS-B 60 360 300 15
45 BOSS-B 512 527 15 20
49 BOSS-B 560 574 14 20
55 BOSS-B 600 617 17 20
205 BOSS-B 632 652 20 15
69 BOSS-B 700 716 16 20
97 BOSS-B 989 1008 16 20
130 BOSS-B 1323 1336 13 20
137 BOSS-B 1380 1395 15 20
4 LION-A 59 75 16 20
7 LION-A 124 137 13 20
13 LION-A 167 178 11 20
19 LION-A 220 235 15 20
166 LION-A 250 270 20 15
26 LION-A 294 309 15 20
175 LION-A 324 329 5 15
33 LION-A 361 374 13 20
186 LION-A 390 395 5 15
198 LION-A 515 535 20 15
65 LION-A 670 679 9 20
217 LION-A 694 714 20 15
77 LION-A 786 802 16 20
81 LION-A 834 845 11 20
90 LION-A 929 943 14 20
238 LION-A 958 978 20 15
101 LION-A 1027 1040 13 20
257 LION-A 1080 1100 20 15
272 LION-A 1207 1217 10 15
123 LION-A 1285 1297 12 20
131 LION-A 1334 1349 15 20
135 LION-A 1372 1382 10 20
297 LION-A 1423 1433 10 15
146 LION-B 30 53 23 15
23 LION-B 263 278 15 20
28 LION-B 321 331 10 20
34 LION-B 395 412 17 20
42 LION-B 497 500 13 20
67 LION-B 685 700 15 20
226 LION-B 780 840 60 15
89 LION-B 929 943 14 20
246 LION-B 990 1010 20 15
105 LION-B 1080 1095 15 20
113 LION-B 1180 1197 17 20
288 LION-B 1365 1370 5 15
294 LION-B 1410 1430 20 15
152 GUAM-A 60 90 30 15
15 GUAM-A 192 208 16 20
20 GUAM-A 250 305 55 20
30 GUAM-A 350 364 14 20
37 GUAM-A 428 441 13 20
41 GUAM-A 466 478 12 20
50 GUAM-A 5665 81 16 20
88 GUAM-A 615 629 14 20
83 GUAM-A 855 869 14 20

86

Bibliography

1. Arbabi, Mansur and John A. Garate. "Interactive Real Time Scheduling and Control."
Proceedings of the 1985 Summer Simulation Conference. 271 -277. 1985.

2. Baker, Bruce N. Introduction to Sequencing and Scheduling. John Wiley & Sons,
1974.

3. Blanton Jr., Joe L. and Roger L. Wainwright. "Multiple Vehicle Routing with Time
and Capacity Constraints using Genetic Algorithms." Proceedings of 5th International
Conference on Genetic Algorithms, edited by S. Forrest. San Mateo, CA: Morgan
Kauffman, 1993.

4. Bruns, Rail. "Direct Chromosome Representation and Advanced Genetic Operators
for Production Scheduling." Proceedings of 5th International Conference on Genetic
Algorithms, edited by S. Forrest. San Mateo, CA: Morgan Kauffman, 1993.

5. Davis, Lawerence. The Handbook of Genetic Algorithms. New York: Van Nostrand
Reinhold, 1991.

6. Garey, Michael R. and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. San Francisco: W.H. Freeman, 1979.

7. Goldberg, David. Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Reading, Mass.: Addison-Wesley, 1989.

8. Gooley, Capt Timothy. Automating the Satellite Range Scheduling Process. MS thesis,
AFIT/GOR/ENS/93M-06, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, March 1993. (AAK-1926).

9. Grefenstette, John, Rajeev Gopal, Brian Rosmaita, and Dirk Van Gucht. "Genetic
Algorithms for the Traveling Salesman Problem." Proceedings of an International
Conference on Genetic Algorithms and their Applications, edited by John Grefen-
stette. Hillsdale, NJ: Lawrence Erlbaum Associates, 1985.

10. Holland, John. Adaptation in Natural and Artificial Systems. Ann Arbor: University
of Michigan Press, 1975. reprinted by MIT Press, Cambridge, MA, 1992.

11. Kennedy, Capt Dale J. A Prototype Ezpert System Advisor for Satellite Support
Scheduling. MS thesis, AFIT/GOR/OS/86D-5, School of Engineering, Air Force In-
stitute of Technology (AU), Wright-Patterson AFB OH, March 1986. (AD-A179 425).

12. Lawler, E.L., editor. The Traveling Salesman Problem. UK: John Wiley and Sons,
1985.

13. Michalewicz, Zbigniew. Genetic Algorithms + Data Structure = Evolution Programs.
New York: Springer-Verlag, 1992.

14. Schalck, Capt Stanley Michael. Automating Satellite Range Scheduling. MS thesis,
AFIT/GSO/ENS/93D-14, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1993. (AD-A273 829).

87

15. Starkweather, T. and Darryl Whitley. "A Comparison of Genetic Sequencing Opera-
tors." Proceedings of 4th International Conference on Genetic Algorithms, edited by
R.K. Belew and L.B. Booker. Los Altos, CA: Morgan Kaufmann, 1991.

16. Syswerda, Gilbert. The Handbook of Genetic Algorithms, chapter 21. New York: Van
Nostrand Reinhold, 1991. Schedule Optimization Using Genetic Algorithms.

17. Whitley, Darrell. "GENITOR: a different genetic algorithm." Proceedings of the Rocky
Mountain Conference on Artificial Intelligence. 118-130. 1988.

18. Whitley, Darrell, Timothy Starkweather, and Daniel Shaner. The Handbook of Ge-
netic Algorithms, chapter 22. New York: Van Nostrand Reinhold, 1991. The Traveling
Salesman and Sequence Scheduling: Quality Solutions using Genetic Edge Recombi-
nation.

19. Whitley, Darryl, Timothy Starkweather, and D'Ann Fuquay. "Scheduling Problems
and Traveling Salesman: The Genetic Edge Recombination Operator." Proceedings
of 3rd International Conference on Genetic Algorithms, edited by J.D. Schaffer. Los
Altos, CA: Morgan Kaufmann, 1989.

88

Vita

Captain Donald A. Parish received a bachelor's degree in Systems Science from

Michigan State University. He was commissioned through Air Force ROTC and entered

active duty in 1987. After initial training at Goodfellow AFB, TX he was assigned to

Headquarters Strategic Air Command at Offutt AFB, NE where he served as a photo-

graphic intelligence officer and current intelligence briefer. Captain Parish left Offutt AFB

in 1992 to attend AFIT. His next assignment is to the National Air Intelligence Center

(NAIC) at Wright-Patterson AFB, OH.

Permanent address: 122 West 18th Street
Kearney, Nebraska 68847

89

Form Approved

REPORT DOCUMENTATION PAGE 0MB No 0704-0188

~ 3'~ . ~ ec ~d:Z''~.a.-- ~ c Ana~ :Inc!O 'f3* uo Se Comnents rega-oing ~tni o.rcden est-ale or an, Dt9me asped of Thfq
-t''~~. ru~ ";O.-). t * Id&5h.nf t,:)n seQa~ ,r-r s e .~ Z.,ecr- rae fo- c~~'t"Ooe dtvons an Reperis1 2 etfterion

D&.• I . -,te ý2.,: ..- r{qtc .a '22 ') '430.,' ,'-a a. 9t'00" \- 4.%l n 'e 'Ta ,;e oe'vorK Red3uctni Project 07aC4. 8S). Was•,ngton EC 20SC3

1. GENY UE OLY Leae bank •.R.OT D.T_. 3REPRT TY_. ANO DATES COVERED
Mc194 Mster's The0

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

A GENETIC ALGORITHM APPROACH TO
AUTOMATING SATELLITE RANGE SCHEDULING

'6. AUTHOR(S)
Donald A. Parish, Capt, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION

Air Force Institute of Technology, WPAFB OH 45433-6583 REPORT NUMBER
AFIT/GOR/ENS/94M-10

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution Unlimited

13. ABSTRACT (Maximum 200 words)
Satellite range scheduling involves scheduling satellite supports in which a satellite and a specific remote
tracking station communicate with each other within a specified time window. As the number of satellite
supports continue to increase, more pressure is placed on the current manual system to generate schedules
efficiently. Previous research efforts focused on heuristic and mixed-integer programming approaches which
may not produce the best results. The objective of this research was to determine if a genetic algorithm
approach to automating the generation of 24 hour schedules was competitive with other methods. The goal
was to schedule as many supports as possible without conflict. The genetic algorithm approach attempted
to find the best priority ordering of support requests, and then used a schedule builder program to build
schedules based on simple rules. A schedule was produced for seven days of representative satellite range
data with slightly better results compared to earlier results using a mixed-integer programming formulation.
Based on the reported results, the genetic algorithm approach presented in this research appears to be a
competitive approach for generating 24-hour satellite range schedules.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Genetic Algorithms, Scheduling, Satellite range scheduling 101

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

°6MALiSIFIED CH&Af FIED %L5 'iW'PIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
PSC O -- 0 b ANS W •o Z39-'8
.?4s , 2

